Free Access
Med Sci (Paris)
Volume 29, Number 8-9, Août–Septembre 2013
Page(s) 736 - 743
Section Diabète : approches thérapeutiques émergentes
Published online 05 September 2013
  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998 ; 282 : 1145–1147. [CrossRef] [PubMed] [Google Scholar]
  2. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861–872. [CrossRef] [PubMed] [Google Scholar]
  3. Mfopou JK, Chen B, Sui L, et al. Recent advances and prospects in the differentiation of pancreatic cells from human embryonic stem cells. Diabetes 2010 ; 59 : 2094–2101. [CrossRef] [PubMed] [Google Scholar]
  4. Baeyens L, Bouwens L. Cellular plasticity of the pancreas. Biol Chem 2009 ; 390 : 995–1001. [CrossRef] [PubMed] [Google Scholar]
  5. Houbracken I, Bouwens L. The quest for tissue stem cells in the pancreas and other organs, and their application in beta-cell replacement. Rev Diabet Stud 2010 ; 7 : 112–123. [CrossRef] [PubMed] [Google Scholar]
  6. Scharfmann R. Du nouveau sur les cellules souches pancréatiques. Med Sci (Paris) 2004 ; 20 : 732–734. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Mfopou JK, Bouwens L. Milestones of pancreatic beta cell differentiation from embryonic stem cells. Adv Gene Mol Cell Ther 2007 ; 1 : 161–171. [Google Scholar]
  8. Nostro MC, Keller G. Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine. Semin Cell Dev Biol 2012 ; 23 : 701–710. [CrossRef] [PubMed] [Google Scholar]
  9. Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2009 ; 326 : 4–35. [CrossRef] [PubMed] [Google Scholar]
  10. Kim SK, Hebrok M. Intercellular signals regulating pancreas development and function. Genes Dev 2001 ; 15 : 111–127. [CrossRef] [PubMed] [Google Scholar]
  11. Grapin-Botton A. Les étapes du développement du pancréas : des pistes pour le traitement du diabète. Med Sci (Paris) 2002 ; 18 : 467–473. [CrossRef] [EDP Sciences] [Google Scholar]
  12. Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells. Diabetes 2001 ; 50 : 1691–1697. [CrossRef] [PubMed] [Google Scholar]
  13. Segev H, Fishman B, Ziskind A, et al. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 2004 ; 22 : 265–274. [CrossRef] [PubMed] [Google Scholar]
  14. D’Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005 ; 23 : 1534–1541. [CrossRef] [PubMed] [Google Scholar]
  15. Kubo A, Shinozaki K, Shannon JM, et al. Development of definitive endoderm from embryonic stem cells in culture. Development 2004 ; 131 : 1651–1662. [CrossRef] [PubMed] [Google Scholar]
  16. Osada SI, Wright CV. Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 1999 ; 126 : 3229–3240. [PubMed] [Google Scholar]
  17. Rodaway A, Takeda H, Koshida S, et al. Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 1999 ; 126 : 3067–3078. [PubMed] [Google Scholar]
  18. Borowiak M, Maehr R, Chen S, et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stems Cell 2009 ; 4 : 348–358. [CrossRef] [Google Scholar]
  19. Sui L, Mfopou JK, Geens M, et al. FGF signaling via MAPK is required early and improves activin A-induced definitive endoderm formation from human embryonic stem cells. Biochem Biophys Res Commun 2012 ; 426 : 380–385. [CrossRef] [PubMed] [Google Scholar]
  20. D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006 ; 24 : 1392–1401. [CrossRef] [PubMed] [Google Scholar]
  21. Jiang J, Au M, Lu K, et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 2007 ; 25 : 1940–1953. [CrossRef] [PubMed] [Google Scholar]
  22. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008 ; 26 : 443–452. [CrossRef] [PubMed] [Google Scholar]
  23. Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 2011 ; 8 : 274–284. [CrossRef] [PubMed] [Google Scholar]
  24. Mfopou JK, Chen B, Mateizel I, et al. Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology 2010 ; 138 : 2233–2245. [CrossRef] [PubMed] [Google Scholar]
  25. Nostro MC, Sarangi F, Ogawa S, et al. Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 2011 ; 138 : 861–871. [CrossRef] [PubMed] [Google Scholar]
  26. Rezania A, Bruin JE, Riedel MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 2012 ; 61 : 2016–2029. [CrossRef] [PubMed] [Google Scholar]
  27. Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 2009 ; 19 : 429–438. [CrossRef] [PubMed] [Google Scholar]
  28. Osafune K, Caron L, Borowiak M, et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 2008 ; 26 : 313–315. [CrossRef] [PubMed] [Google Scholar]
  29. Stoffers DA, Zinkin NT, Stanojevic V, et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997 ; 15 : 106–110. [CrossRef] [PubMed] [Google Scholar]
  30. Kelly OG, Chan MY, Martinson LA, et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 2011 ; 29 : 750–756. [CrossRef] [PubMed] [Google Scholar]
  31. Sui L, Geens M, Sermon K, et al. Role of BMP signaling in pancreatic progenitor differentiation from human embryonic stem cells. Stem Cell Rev Rep 2013 ; DOI : 10.1007/s12015-013-9435-6. [Google Scholar]
  32. Jiang W, Shi Y, Zhao D, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 2007 ; 17 : 333–344. [CrossRef] [PubMed] [Google Scholar]
  33. Basford CL, Prentice KJ, Hardy AB, et al. The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia 2012 ; 55 : 358–371. [CrossRef] [PubMed] [Google Scholar]
  34. Schulz TC, Young HY, Agulnick AD, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 2012 ; 7 : e37004. [CrossRef] [PubMed] [Google Scholar]
  35. Eshpeter A, Jiang J, Au M, et al. In vivo characterization of transplanted human embryonic stem cell-derived pancreatic endocrine islet cells. Cell Prolif 2008 ; 41 : 843–858. [CrossRef] [PubMed] [Google Scholar]
  36. Sui L, Mfopou JK, Chen B, et al. Transplantation of human embryonic stem cell-derived pancreatic endoderm reveals a site-specific survival, growth and differentiation. Cell Transplantation 2012 ; DOI : [Google Scholar]
  37. Tuch BE, Hughes TC, Evans MD. Encapsulated pancreatic progenitors derived from human embryonic stem cells as a therapy for insulin-dependent diabetes. Diabetes Metab Res Rev 2011 ; 27 : 928–932. [CrossRef] [PubMed] [Google Scholar]
  38. Sneddon JB, Borowiak M, Melton DA. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 2012 ; 491 : 765–768. [PubMed] [Google Scholar]
  39. Fishman B, Segev H, Kopper O, et al. Targeting pancreatic progenitor cells in human embryonic stem cell differentiation for the identification of novel cell surface markers. Stem Cell Rev 2012 ; 8 : 792–802. [CrossRef] [PubMed] [Google Scholar]
  40. Jiang W, Sui X, Zhang D, et al. CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells 2011 ; 29 : 609–617. [CrossRef] [PubMed] [Google Scholar]
  41. Naujok O, Lenzen S. A critical re-evaluation of CD24-positivity of human embryonic stem cells differentiated into pancreatic progenitors. Stem Cell Rev 2012 ; 8 : 779–791. [CrossRef] [PubMed] [Google Scholar]
  42. Li F, He Z, Li Y, et al. Combined activin A/LiCl/Noggin treatment improves production of mouse embryonic stem cell-derived definitive endoderm cells. J Cell Biochem 2011 ; 112 : 1022–1034. [CrossRef] [PubMed] [Google Scholar]
  43. Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, activin/nodal and BMP signaling. Development 2008 ; 135 : 2969–2979. [CrossRef] [PubMed] [Google Scholar]
  44. Phillips BW, Hentze H, Rust WL, et al. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 2007 ; 16 : 561–578. [CrossRef] [PubMed] [Google Scholar]
  45. Soria B, Roche E, Berná G, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000 ; 49 : 157–162. [CrossRef] [PubMed] [Google Scholar]
  46. Brons IG, Smithers LE, Trotter MW, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007 ; 448 : 191–195. [CrossRef] [PubMed] [Google Scholar]
  47. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007 ; 448 : 196–199. [CrossRef] [PubMed] [Google Scholar]
  48. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  49. Duvillié B. Quelles cellules souches pour une réparation du pancréas endocrine ? Med Sci (Paris) 2013 ; 29 : 744–748. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Vieira A, Druelle N, Courtney M, et al. Reprogrammation des cellules pancréatiques en cellules β. Med Sci (Paris) 2013 ; 29 : 749–755. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981 ; 292 : 154–156. [CrossRef] [PubMed] [Google Scholar]
  52. Martin GR. Isolation of pluripotent cell lines from early mouse embryos cultured in medium conditioned by teratocarcinomas stem cells. Proc Natl Acad Sci USA 1981 ; 76 : 7634–7638. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.