Free Access
Med Sci (Paris)
Volume 29, Number 8-9, Août–Septembre 2013
Page(s) 729 - 735
Section Diabète : approches thérapeutiques émergentes
Published online 05 September 2013
  1. Himms-Hagen J. Brown adipose tissue thermogenesis : interdisciplinary studies. FASEB J 1990 ; 4 : 2890–2898. [PubMed] [Google Scholar]
  2. Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev 1984 ; 64 : 1–64. [PubMed] [Google Scholar]
  3. Ricquier D. Uncoupling protein 1 of brown adipocytes, the only uncoupler : a historical perspective. Front Endocrinol (Lausanne) 2011 ; 2 : 85. [PubMed] [Google Scholar]
  4. Bouloumié A, Sengenes C, Galitzky J. Les progéniteurs adipeux blancs et bruns : pourra-t-on transformer la fourmi en cigale ? Med Sci (Paris) 2009 ; 25 : 123–125. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Billon N, Dani C. Developmental origins of the adipocyte lineage : new insights from genetics and genomics studies. Stem Cell Rev 2012 ; 8 : 55–66. [CrossRef] [PubMed] [Google Scholar]
  6. Seale P, Bjork B, Yang W, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008 ; 454 : 961–967. [CrossRef] [PubMed] [Google Scholar]
  7. Timmons JA, Wennmalm K, Larsson O, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007 ; 104 : 4401–4406. [CrossRef] [Google Scholar]
  8. Cousin B, Cinti S, Morroni M, et al. Occurrence of brown adipocytes in rat white adipose tissue : molecular and morphological characterization. J Cell Sci 1992 ; 103 : 931–942. [PubMed] [Google Scholar]
  9. Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012 ; 150 : 366–376. [CrossRef] [PubMed] [Google Scholar]
  10. Tran KV, Gealekman O, Frontini A, et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 2012 ; 15 : 222–229. [CrossRef] [PubMed] [Google Scholar]
  11. Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 2012 ; 15 : 480–491. [CrossRef] [PubMed] [Google Scholar]
  12. Smorlesi A, Frontini A, Giordano A, Cinti S., The adipose organ : white-brown adipocyte plasticity, metabolic inflammation. Obes Rev 2012 ; 13 : suppl 2 83–96. [CrossRef] [PubMed] [Google Scholar]
  13. Casteilla L, Champigny O, Bouillaud F, et al. Sequential changes in the expression of mitochondrial protein mRNA during the development of brown adipose tissue in bovine and ovine species. Sudden occurrence of uncoupling protein mRNA during embryogenesis and its disappearance after birth. Biochem J 1989 ; 257 : 665–671. [PubMed] [Google Scholar]
  14. Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta 2013 ; 1831 : 969–985. [CrossRef] [PubMed] [Google Scholar]
  15. Boström P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012 ; 481 : 463–468. [CrossRef] [PubMed] [Google Scholar]
  16. Bouillaud F, Villarroya F, Hentz E, et al. Detection of brown adipose tissue uncoupling protein mRNA in adult patients by a human genomic probe. Clin Sci (Lond) 1988 ; 75 : 21–27. [PubMed] [Google Scholar]
  17. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007 ; 293 : E444–E452. [CrossRef] [PubMed] [Google Scholar]
  18. Ouellet V, Labbé SM, Blondin DP, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 2012 ; 122 : 545–552. [CrossRef] [PubMed] [Google Scholar]
  19. Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009 ; 360 : 1500–1508. [CrossRef] [PubMed] [Google Scholar]
  20. Crisan M, Casteilla L, Lehr L, et al. A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells 2008 ; 26 : 2425–2433. [CrossRef] [PubMed] [Google Scholar]
  21. Russell AP, Crisan M, Léger B, et al. Brown adipocyte progenitor population is modified in obese and diabetic skeletal muscle. Int J Obes (Lond) 2012 ; 36 : 155–158. [CrossRef] [PubMed] [Google Scholar]
  22. Boss O, Farmer SR., Recruitment of brown adipose tissue as a therapy for obesity-associated diseases. Front Endocrinol (Lausanne) 2012 ; 3 : 14. [PubMed] [Google Scholar]
  23. 0 Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med 2011 ; 17 : 200–205. [CrossRef] [PubMed] [Google Scholar]
  24. Guerra C, Navarro P, Valverde AM, et al. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest 2001 ; 108 : 1205–1213. [PubMed] [Google Scholar]
  25. Lowell BB, S-Susulic V, Hamann A, et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993 ; 366 : 740–742. [CrossRef] [PubMed] [Google Scholar]
  26. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 2009 ; 9 : 203–209. [CrossRef] [PubMed] [Google Scholar]
  27. Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 2012 ; 61 : 674–682. [CrossRef] [PubMed] [Google Scholar]
  28. Stanford KI, Middelbeek RJ, Townsend KL, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 2013 ; 123 : 215–223. [CrossRef] [PubMed] [Google Scholar]
  29. Seo JA Kim NH. Fibroblast growth factor 21 : a novel metabolic regulator. Diabetes Metab J 2012 ; 36 : 26–28. [CrossRef] [PubMed] [Google Scholar]
  30. Almind K, Manieri M, Sivitz WI, et al. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc Natl Acad Sci USA 2007 ; 104 : 2366–2371. [CrossRef] [Google Scholar]
  31. J Sanchez-Gurmaches, CM Hung, CA Sparks, et al. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 2012 ; 16 : 348–362. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.