Accès gratuit
Med Sci (Paris)
Volume 29, Numéro 8-9, Août–Septembre 2013
Page(s) 736 - 743
Section Diabète : approches thérapeutiques émergentes
Publié en ligne 5 septembre 2013
  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998 ; 282 : 1145–1147. [CrossRef] [PubMed] [Google Scholar]
  2. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861–872. [CrossRef] [PubMed] [Google Scholar]
  3. Mfopou JK, Chen B, Sui L, et al. Recent advances and prospects in the differentiation of pancreatic cells from human embryonic stem cells. Diabetes 2010 ; 59 : 2094–2101. [CrossRef] [PubMed] [Google Scholar]
  4. Baeyens L, Bouwens L. Cellular plasticity of the pancreas. Biol Chem 2009 ; 390 : 995–1001. [CrossRef] [PubMed] [Google Scholar]
  5. Houbracken I, Bouwens L. The quest for tissue stem cells in the pancreas and other organs, and their application in beta-cell replacement. Rev Diabet Stud 2010 ; 7 : 112–123. [CrossRef] [PubMed] [Google Scholar]
  6. Scharfmann R. Du nouveau sur les cellules souches pancréatiques. Med Sci (Paris) 2004 ; 20 : 732–734. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Mfopou JK, Bouwens L. Milestones of pancreatic beta cell differentiation from embryonic stem cells. Adv Gene Mol Cell Ther 2007 ; 1 : 161–171. [Google Scholar]
  8. Nostro MC, Keller G. Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine. Semin Cell Dev Biol 2012 ; 23 : 701–710. [CrossRef] [PubMed] [Google Scholar]
  9. Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2009 ; 326 : 4–35. [CrossRef] [PubMed] [Google Scholar]
  10. Kim SK, Hebrok M. Intercellular signals regulating pancreas development and function. Genes Dev 2001 ; 15 : 111–127. [CrossRef] [PubMed] [Google Scholar]
  11. Grapin-Botton A. Les étapes du développement du pancréas : des pistes pour le traitement du diabète. Med Sci (Paris) 2002 ; 18 : 467–473. [CrossRef] [EDP Sciences] [Google Scholar]
  12. Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells. Diabetes 2001 ; 50 : 1691–1697. [CrossRef] [PubMed] [Google Scholar]
  13. Segev H, Fishman B, Ziskind A, et al. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 2004 ; 22 : 265–274. [CrossRef] [PubMed] [Google Scholar]
  14. D’Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005 ; 23 : 1534–1541. [CrossRef] [PubMed] [Google Scholar]
  15. Kubo A, Shinozaki K, Shannon JM, et al. Development of definitive endoderm from embryonic stem cells in culture. Development 2004 ; 131 : 1651–1662. [CrossRef] [PubMed] [Google Scholar]
  16. Osada SI, Wright CV. Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 1999 ; 126 : 3229–3240. [PubMed] [Google Scholar]
  17. Rodaway A, Takeda H, Koshida S, et al. Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 1999 ; 126 : 3067–3078. [PubMed] [Google Scholar]
  18. Borowiak M, Maehr R, Chen S, et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stems Cell 2009 ; 4 : 348–358. [CrossRef] [Google Scholar]
  19. Sui L, Mfopou JK, Geens M, et al. FGF signaling via MAPK is required early and improves activin A-induced definitive endoderm formation from human embryonic stem cells. Biochem Biophys Res Commun 2012 ; 426 : 380–385. [CrossRef] [PubMed] [Google Scholar]
  20. D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006 ; 24 : 1392–1401. [CrossRef] [PubMed] [Google Scholar]
  21. Jiang J, Au M, Lu K, et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 2007 ; 25 : 1940–1953. [CrossRef] [PubMed] [Google Scholar]
  22. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008 ; 26 : 443–452. [CrossRef] [PubMed] [Google Scholar]
  23. Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 2011 ; 8 : 274–284. [CrossRef] [PubMed] [Google Scholar]
  24. Mfopou JK, Chen B, Mateizel I, et al. Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology 2010 ; 138 : 2233–2245. [CrossRef] [PubMed] [Google Scholar]
  25. Nostro MC, Sarangi F, Ogawa S, et al. Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 2011 ; 138 : 861–871. [CrossRef] [PubMed] [Google Scholar]
  26. Rezania A, Bruin JE, Riedel MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 2012 ; 61 : 2016–2029. [CrossRef] [PubMed] [Google Scholar]
  27. Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 2009 ; 19 : 429–438. [CrossRef] [PubMed] [Google Scholar]
  28. Osafune K, Caron L, Borowiak M, et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 2008 ; 26 : 313–315. [CrossRef] [PubMed] [Google Scholar]
  29. Stoffers DA, Zinkin NT, Stanojevic V, et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997 ; 15 : 106–110. [CrossRef] [PubMed] [Google Scholar]
  30. Kelly OG, Chan MY, Martinson LA, et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 2011 ; 29 : 750–756. [CrossRef] [PubMed] [Google Scholar]
  31. Sui L, Geens M, Sermon K, et al. Role of BMP signaling in pancreatic progenitor differentiation from human embryonic stem cells. Stem Cell Rev Rep 2013 ; DOI : 10.1007/s12015-013-9435-6. [Google Scholar]
  32. Jiang W, Shi Y, Zhao D, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 2007 ; 17 : 333–344. [CrossRef] [PubMed] [Google Scholar]
  33. Basford CL, Prentice KJ, Hardy AB, et al. The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia 2012 ; 55 : 358–371. [CrossRef] [PubMed] [Google Scholar]
  34. Schulz TC, Young HY, Agulnick AD, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 2012 ; 7 : e37004. [CrossRef] [PubMed] [Google Scholar]
  35. Eshpeter A, Jiang J, Au M, et al. In vivo characterization of transplanted human embryonic stem cell-derived pancreatic endocrine islet cells. Cell Prolif 2008 ; 41 : 843–858. [CrossRef] [PubMed] [Google Scholar]
  36. Sui L, Mfopou JK, Chen B, et al. Transplantation of human embryonic stem cell-derived pancreatic endoderm reveals a site-specific survival, growth and differentiation. Cell Transplantation 2012 ; DOI : [Google Scholar]
  37. Tuch BE, Hughes TC, Evans MD. Encapsulated pancreatic progenitors derived from human embryonic stem cells as a therapy for insulin-dependent diabetes. Diabetes Metab Res Rev 2011 ; 27 : 928–932. [CrossRef] [PubMed] [Google Scholar]
  38. Sneddon JB, Borowiak M, Melton DA. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 2012 ; 491 : 765–768. [PubMed] [Google Scholar]
  39. Fishman B, Segev H, Kopper O, et al. Targeting pancreatic progenitor cells in human embryonic stem cell differentiation for the identification of novel cell surface markers. Stem Cell Rev 2012 ; 8 : 792–802. [CrossRef] [PubMed] [Google Scholar]
  40. Jiang W, Sui X, Zhang D, et al. CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells 2011 ; 29 : 609–617. [CrossRef] [PubMed] [Google Scholar]
  41. Naujok O, Lenzen S. A critical re-evaluation of CD24-positivity of human embryonic stem cells differentiated into pancreatic progenitors. Stem Cell Rev 2012 ; 8 : 779–791. [CrossRef] [PubMed] [Google Scholar]
  42. Li F, He Z, Li Y, et al. Combined activin A/LiCl/Noggin treatment improves production of mouse embryonic stem cell-derived definitive endoderm cells. J Cell Biochem 2011 ; 112 : 1022–1034. [CrossRef] [PubMed] [Google Scholar]
  43. Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, activin/nodal and BMP signaling. Development 2008 ; 135 : 2969–2979. [CrossRef] [PubMed] [Google Scholar]
  44. Phillips BW, Hentze H, Rust WL, et al. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 2007 ; 16 : 561–578. [CrossRef] [PubMed] [Google Scholar]
  45. Soria B, Roche E, Berná G, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000 ; 49 : 157–162. [CrossRef] [PubMed] [Google Scholar]
  46. Brons IG, Smithers LE, Trotter MW, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007 ; 448 : 191–195. [CrossRef] [PubMed] [Google Scholar]
  47. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007 ; 448 : 196–199. [CrossRef] [PubMed] [Google Scholar]
  48. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  49. Duvillié B. Quelles cellules souches pour une réparation du pancréas endocrine ? Med Sci (Paris) 2013 ; 29 : 744–748. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Vieira A, Druelle N, Courtney M, et al. Reprogrammation des cellules pancréatiques en cellules β. Med Sci (Paris) 2013 ; 29 : 749–755. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981 ; 292 : 154–156. [CrossRef] [PubMed] [Google Scholar]
  52. Martin GR. Isolation of pluripotent cell lines from early mouse embryos cultured in medium conditioned by teratocarcinomas stem cells. Proc Natl Acad Sci USA 1981 ; 76 : 7634–7638. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.