Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 8-9, Août–Septembre 2013
Page(s) 744 - 748
Section Diabète : approches thérapeutiques émergentes
DOI https://doi.org/10.1051/medsci/2013298013
Publié en ligne 5 septembre 2013
  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  2. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000 ; 343 : 230–238. [CrossRef] [PubMed] [Google Scholar]
  3. Ryan EA, Shandro T, Green K, et al. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes 2004 ; 53 : 955–962. [CrossRef] [PubMed] [Google Scholar]
  4. Soria B, Roche E, Berna G, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000 ; 49 : 157–162. [CrossRef] [PubMed] [Google Scholar]
  5. Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001 ; 292 : 1389–1394. [CrossRef] [PubMed] [Google Scholar]
  6. Hansson M, Tonning A, Frandsen U, et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes 2004 ; 53 : 2603–2609. [CrossRef] [PubMed] [Google Scholar]
  7. Heinis M, Simon MT, Duvillie B. New insights into endocrine pancreatic development: the role of environmental factors. Horm Res Paediatr 2010 ; 74 : 77–82. [CrossRef] [PubMed] [Google Scholar]
  8. Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 1996 ; 122 : 1409–1416. [PubMed] [Google Scholar]
  9. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000 ; 97 : 1607–1611. [CrossRef] [Google Scholar]
  10. Haumaitre C, Lenoir O, Scharfmann R. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 2008 ; 28 : 6373–6383. [CrossRef] [PubMed] [Google Scholar]
  11. Heinis M, Simon MT, Ilc K, et al. Oxygen tension regulates pancreatic beta-cell differentiation through hypoxia-inducible factor 1alpha. Diabetes 2010 ; 59 : 662–669. [CrossRef] [PubMed] [Google Scholar]
  12. Heinis M, Soggia A, Bechetoille C, et al. HIF1alpha and pancreatic beta-cell development. Faseb J 2012 ; 26 : 2734–2742. [CrossRef] [PubMed] [Google Scholar]
  13. Attali M, Stetsyuk V, Basmaciogullari A, et al. Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes 2007 ; 56 : 1248–1258. [CrossRef] [PubMed] [Google Scholar]
  14. Guillemain G, Filhoulaud G, Da Silva-Xavier G, et al. Glucose is necessary for embryonic pancreatic endocrine cell differentiation. J Biol Chem 2007 ; 282 : 15228–15237. [CrossRef] [PubMed] [Google Scholar]
  15. Valtat B, Dupuis C, Zenaty D, et al. Genetic evidence of the programming of beta cell mass and function by glucocorticoids in mice. Diabetologia 2011 ; 54 : 350–359. [CrossRef] [PubMed] [Google Scholar]
  16. Blyszczuk P, Czyz J, Kania G, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 2003 ; 100 : 998–1003. [CrossRef] [Google Scholar]
  17. Kubo A, Shinozaki K, Shannon JM, et al. Development of definitive endoderm from embryonic stem cells in culture. Development 2004 ; 131 : 1651–1662. [CrossRef] [PubMed] [Google Scholar]
  18. D’Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005 ; 23 : 1534–1541. [CrossRef] [PubMed] [Google Scholar]
  19. D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006 ; 24 : 1392–1401. [CrossRef] [PubMed] [Google Scholar]
  20. Castaing M, Peault B, Basmaciogullari A, et al. Blood glucose normalization upon transplantation of human embryonic pancreas into beta-cell-deficient SCID mice. Diabetologia 2001 ; 44 : 2066–2076. [CrossRef] [PubMed] [Google Scholar]
  21. Kelly OG, Chan MY, Martinson LA, et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 2011 ; 29 : 750–756. [CrossRef] [PubMed] [Google Scholar]
  22. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008 ; 26 : 443–452. [CrossRef] [PubMed] [Google Scholar]
  23. Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009 ; 106 : 15768–15773. [CrossRef] [Google Scholar]
  24. Teo AK, Windmueller R, Johansson BB, et al. Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J Biol Chem 2013 ; doi : 10.1074/jbc.C112.428979 [Google Scholar]
  25. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 2011 ; 9 : 17–23. [CrossRef] [PubMed] [Google Scholar]
  26. Feng Q, Lu SJ, Klimanskaya I, et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 2010 ; 28 : 704–712. [CrossRef] [PubMed] [Google Scholar]
  27. Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011 ; 471 : 63–67. [CrossRef] [PubMed] [Google Scholar]
  28. Prabakar KR, Dominguez-Bendala J, Molano RD, et al. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant 2012 ; 21 : 1321–1339. [CrossRef] [PubMed] [Google Scholar]
  29. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004 ; 429 : 41–46. [CrossRef] [PubMed] [Google Scholar]
  30. Inada A, Nienaber C, Katsuta H, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA 2008 ; 105 : 19915–19919. [CrossRef] [Google Scholar]
  31. Xu X, D’Hoker J, Stange G, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008 ; 132 : 197–207. [CrossRef] [PubMed] [Google Scholar]
  32. Rankin MM, Wilbur CJ, Rak K, et al. Beta cells are not generated in pancreatic duct ligation induced injury in adult mice. Diabetes 2013 ; 62 : 1634–1645. [CrossRef] [PubMed] [Google Scholar]
  33. Kopp JL, Dubois CL, Schaffer AE, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 2011 ; 138 : 653–665. [CrossRef] [PubMed] [Google Scholar]
  34. Ferber S, Halkin A, Cohen H, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000 ; 6 : 568–572. [CrossRef] [PubMed] [Google Scholar]
  35. Collombat P, Xu X, Ravassard P, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009 ; 138 : 449–462. [CrossRef] [PubMed] [Google Scholar]
  36. Lu J, Herrera PL, Carreira C, et al. Alpha cell-specific Men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development. Gastroenterology 2010 ; 138 : 1954–1965. [CrossRef] [PubMed] [Google Scholar]
  37. Chung CH, Hao E, Piran R, et al. Pancreatic beta-cell neogenesis by direct conversion from mature alpha-cells. Stem Cells 2010 ; 28 : 1630–1638. [CrossRef] [PubMed] [Google Scholar]
  38. Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008 ; 455 : 627–632. [CrossRef] [PubMed] [Google Scholar]
  39. Vieira A, Druelle N, Courtney M, et al. Reprogrammation des cellules pancréatiques en cellules β. Med Sci (Paris) 2013 ; 29 : 749–755. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Kunjom Mfopou J, Bouwens L. Différenciation des cellules souches pluripotentes en cellules pancréatiques. Med Sci (Paris) 2013 ; 29 : 736–743. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Thorel F, Herrera PL. Génération de cellules β-pancréatiques par conversion spontanée de cellules α chez des souris diabétiques. Med Sci (Paris) 2010 ; 26 : 906–909. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.