Free Access
Med Sci (Paris)
Volume 29, Number 8-9, Août–Septembre 2013
Page(s) 744 - 748
Section Diabète : approches thérapeutiques émergentes
Published online 05 September 2013
  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  2. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000 ; 343 : 230–238. [CrossRef] [PubMed] [Google Scholar]
  3. Ryan EA, Shandro T, Green K, et al. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes 2004 ; 53 : 955–962. [CrossRef] [PubMed] [Google Scholar]
  4. Soria B, Roche E, Berna G, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000 ; 49 : 157–162. [CrossRef] [PubMed] [Google Scholar]
  5. Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001 ; 292 : 1389–1394. [CrossRef] [PubMed] [Google Scholar]
  6. Hansson M, Tonning A, Frandsen U, et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes 2004 ; 53 : 2603–2609. [CrossRef] [PubMed] [Google Scholar]
  7. Heinis M, Simon MT, Duvillie B. New insights into endocrine pancreatic development: the role of environmental factors. Horm Res Paediatr 2010 ; 74 : 77–82. [CrossRef] [PubMed] [Google Scholar]
  8. Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 1996 ; 122 : 1409–1416. [PubMed] [Google Scholar]
  9. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000 ; 97 : 1607–1611. [CrossRef] [Google Scholar]
  10. Haumaitre C, Lenoir O, Scharfmann R. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 2008 ; 28 : 6373–6383. [CrossRef] [PubMed] [Google Scholar]
  11. Heinis M, Simon MT, Ilc K, et al. Oxygen tension regulates pancreatic beta-cell differentiation through hypoxia-inducible factor 1alpha. Diabetes 2010 ; 59 : 662–669. [CrossRef] [PubMed] [Google Scholar]
  12. Heinis M, Soggia A, Bechetoille C, et al. HIF1alpha and pancreatic beta-cell development. Faseb J 2012 ; 26 : 2734–2742. [CrossRef] [PubMed] [Google Scholar]
  13. Attali M, Stetsyuk V, Basmaciogullari A, et al. Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes 2007 ; 56 : 1248–1258. [CrossRef] [PubMed] [Google Scholar]
  14. Guillemain G, Filhoulaud G, Da Silva-Xavier G, et al. Glucose is necessary for embryonic pancreatic endocrine cell differentiation. J Biol Chem 2007 ; 282 : 15228–15237. [CrossRef] [PubMed] [Google Scholar]
  15. Valtat B, Dupuis C, Zenaty D, et al. Genetic evidence of the programming of beta cell mass and function by glucocorticoids in mice. Diabetologia 2011 ; 54 : 350–359. [CrossRef] [PubMed] [Google Scholar]
  16. Blyszczuk P, Czyz J, Kania G, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 2003 ; 100 : 998–1003. [CrossRef] [Google Scholar]
  17. Kubo A, Shinozaki K, Shannon JM, et al. Development of definitive endoderm from embryonic stem cells in culture. Development 2004 ; 131 : 1651–1662. [CrossRef] [PubMed] [Google Scholar]
  18. D’Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005 ; 23 : 1534–1541. [CrossRef] [PubMed] [Google Scholar]
  19. D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006 ; 24 : 1392–1401. [CrossRef] [PubMed] [Google Scholar]
  20. Castaing M, Peault B, Basmaciogullari A, et al. Blood glucose normalization upon transplantation of human embryonic pancreas into beta-cell-deficient SCID mice. Diabetologia 2001 ; 44 : 2066–2076. [CrossRef] [PubMed] [Google Scholar]
  21. Kelly OG, Chan MY, Martinson LA, et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 2011 ; 29 : 750–756. [CrossRef] [PubMed] [Google Scholar]
  22. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008 ; 26 : 443–452. [CrossRef] [PubMed] [Google Scholar]
  23. Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009 ; 106 : 15768–15773. [CrossRef] [Google Scholar]
  24. Teo AK, Windmueller R, Johansson BB, et al. Derivation of human induced pluripotent stem cells from patients with maturity onset diabetes of the young. J Biol Chem 2013 ; doi : 10.1074/jbc.C112.428979 [Google Scholar]
  25. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 2011 ; 9 : 17–23. [CrossRef] [PubMed] [Google Scholar]
  26. Feng Q, Lu SJ, Klimanskaya I, et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 2010 ; 28 : 704–712. [CrossRef] [PubMed] [Google Scholar]
  27. Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011 ; 471 : 63–67. [CrossRef] [PubMed] [Google Scholar]
  28. Prabakar KR, Dominguez-Bendala J, Molano RD, et al. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant 2012 ; 21 : 1321–1339. [CrossRef] [PubMed] [Google Scholar]
  29. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004 ; 429 : 41–46. [CrossRef] [PubMed] [Google Scholar]
  30. Inada A, Nienaber C, Katsuta H, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA 2008 ; 105 : 19915–19919. [CrossRef] [Google Scholar]
  31. Xu X, D’Hoker J, Stange G, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008 ; 132 : 197–207. [CrossRef] [PubMed] [Google Scholar]
  32. Rankin MM, Wilbur CJ, Rak K, et al. Beta cells are not generated in pancreatic duct ligation induced injury in adult mice. Diabetes 2013 ; 62 : 1634–1645. [CrossRef] [PubMed] [Google Scholar]
  33. Kopp JL, Dubois CL, Schaffer AE, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 2011 ; 138 : 653–665. [CrossRef] [PubMed] [Google Scholar]
  34. Ferber S, Halkin A, Cohen H, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000 ; 6 : 568–572. [CrossRef] [PubMed] [Google Scholar]
  35. Collombat P, Xu X, Ravassard P, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009 ; 138 : 449–462. [CrossRef] [PubMed] [Google Scholar]
  36. Lu J, Herrera PL, Carreira C, et al. Alpha cell-specific Men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development. Gastroenterology 2010 ; 138 : 1954–1965. [CrossRef] [PubMed] [Google Scholar]
  37. Chung CH, Hao E, Piran R, et al. Pancreatic beta-cell neogenesis by direct conversion from mature alpha-cells. Stem Cells 2010 ; 28 : 1630–1638. [CrossRef] [PubMed] [Google Scholar]
  38. Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008 ; 455 : 627–632. [CrossRef] [PubMed] [Google Scholar]
  39. Vieira A, Druelle N, Courtney M, et al. Reprogrammation des cellules pancréatiques en cellules β. Med Sci (Paris) 2013 ; 29 : 749–755. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Kunjom Mfopou J, Bouwens L. Différenciation des cellules souches pluripotentes en cellules pancréatiques. Med Sci (Paris) 2013 ; 29 : 736–743. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Thorel F, Herrera PL. Génération de cellules β-pancréatiques par conversion spontanée de cellules α chez des souris diabétiques. Med Sci (Paris) 2010 ; 26 : 906–909. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.