Free Access
Med Sci (Paris)
Volume 29, Number 4, Avril 2013
Page(s) 405 - 410
Section M/S Revues
Published online 26 April 2013
  1. Bai Q, Desprat R, Klein B, et al. Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective. Curr Gene Ther 2013 ; Jan 7. [Epub ahead of print] [PubMed] [Google Scholar]
  2. Vogel G, Normile D. Nobel Prize in physiology or medicine. Reprogrammed cells earn biologists top honor. Science 2012 ; 338 : 178–179. [CrossRef] [PubMed] [Google Scholar]
  3. David L, Samavarchi-Tehrani P, Golipour A, Wrana JL. Looking into the black box: insights into the mechanisms of somatic cell reprogramming. Genes 2011 ; 2 : 81–106. [CrossRef] [PubMed] [Google Scholar]
  4. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  5. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008 ; 321 : 699–702. [CrossRef] [PubMed] [Google Scholar]
  6. Hanna J, Markoulaki S, Schorderet P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 2008 ; 133 : 250–264. [CrossRef] [PubMed] [Google Scholar]
  7. Hanna J, Saha K, Pando B, et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 2009 ; 462 : 595–601. [CrossRef] [PubMed] [Google Scholar]
  8. David L. La transition mésenchymato-épithéliale, passage obligatoire pour la reprogrammation de fibroblastes en iPSC. Med Sci(Paris) 2010 ; 26 : 1030–1032. [Google Scholar]
  9. Smith ZD, Nachman I, Regev A, Meissner A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat Biotech 2010 ; 28 : 521–526. [CrossRef] [Google Scholar]
  10. Samavarchi-Tehrani P, Golipour A, David L, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010 ; 7 : 64–77. [CrossRef] [PubMed] [Google Scholar]
  11. Subramanyam D, Lamouille S, Judson RL, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotech 2011 ; 29 : 443–448. [CrossRef] [Google Scholar]
  12. Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009 ; 458 : 766–770. [CrossRef] [PubMed] [Google Scholar]
  13. Stadtfeld M, Maherali N, Borkent M, Hochedlinger K. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods 2010 ; 7 : 53–55. [CrossRef] [PubMed] [Google Scholar]
  14. Carey BW, Markoulaki S, Beard C, et al. Single-gene transgenic mouse strains for reprogramming adult somatic cells. Nat Methods 2010 ; 7 : 56–59. [CrossRef] [PubMed] [Google Scholar]
  15. Buganim Y, Faddah DA, Cheng AW, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012 ; 150 : 1209–1222. [CrossRef] [PubMed] [Google Scholar]
  16. Polo JM, Anderssen E, Walsh RM, et al. A Molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012 ; 151 : 1617–1632. [CrossRef] [PubMed] [Google Scholar]
  17. Sridharan R, Tchieu J, Mason MJ, et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 2009 ; 136 : 364–377. [CrossRef] [PubMed] [Google Scholar]
  18. Chen X, Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008 ; 133 : 1106–1117. [CrossRef] [PubMed] [Google Scholar]
  19. Golipour A, David L, Liu Y, et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 2012 ; 11 : 769–782. [CrossRef] [PubMed] [Google Scholar]
  20. Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 2012 ; 151 : 994–1004. [CrossRef] [PubMed] [Google Scholar]
  21. Martello G, Sugimoto T, Diamanti E, et al. Esrrb is a pivotal target of the gsk3/tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 2012 ; 11 : 491–504. [CrossRef] [PubMed] [Google Scholar]
  22. Festuccia N, Osorno R, Halbritter F, et al. Esrrb Is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell 2012 ; 11 : 477–490. [CrossRef] [PubMed] [Google Scholar]
  23. Carey BW, Markoulaki S, Hanna JH, et al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 2011 ; 9 : 588–598. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.