Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 4, Avril 2013
Page(s) 405 - 410
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013294014
Publié en ligne 26 avril 2013
  1. Bai Q, Desprat R, Klein B, et al. Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective. Curr Gene Ther 2013 ; Jan 7. [Epub ahead of print] [PubMed] [Google Scholar]
  2. Vogel G, Normile D. Nobel Prize in physiology or medicine. Reprogrammed cells earn biologists top honor. Science 2012 ; 338 : 178–179. [CrossRef] [PubMed] [Google Scholar]
  3. David L, Samavarchi-Tehrani P, Golipour A, Wrana JL. Looking into the black box: insights into the mechanisms of somatic cell reprogramming. Genes 2011 ; 2 : 81–106. [CrossRef] [PubMed] [Google Scholar]
  4. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  5. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008 ; 321 : 699–702. [CrossRef] [PubMed] [Google Scholar]
  6. Hanna J, Markoulaki S, Schorderet P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 2008 ; 133 : 250–264. [CrossRef] [PubMed] [Google Scholar]
  7. Hanna J, Saha K, Pando B, et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 2009 ; 462 : 595–601. [CrossRef] [PubMed] [Google Scholar]
  8. David L. La transition mésenchymato-épithéliale, passage obligatoire pour la reprogrammation de fibroblastes en iPSC. Med Sci(Paris) 2010 ; 26 : 1030–1032. [Google Scholar]
  9. Smith ZD, Nachman I, Regev A, Meissner A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat Biotech 2010 ; 28 : 521–526. [CrossRef] [Google Scholar]
  10. Samavarchi-Tehrani P, Golipour A, David L, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010 ; 7 : 64–77. [CrossRef] [PubMed] [Google Scholar]
  11. Subramanyam D, Lamouille S, Judson RL, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotech 2011 ; 29 : 443–448. [CrossRef] [Google Scholar]
  12. Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009 ; 458 : 766–770. [CrossRef] [PubMed] [Google Scholar]
  13. Stadtfeld M, Maherali N, Borkent M, Hochedlinger K. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods 2010 ; 7 : 53–55. [CrossRef] [PubMed] [Google Scholar]
  14. Carey BW, Markoulaki S, Beard C, et al. Single-gene transgenic mouse strains for reprogramming adult somatic cells. Nat Methods 2010 ; 7 : 56–59. [CrossRef] [PubMed] [Google Scholar]
  15. Buganim Y, Faddah DA, Cheng AW, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012 ; 150 : 1209–1222. [CrossRef] [PubMed] [Google Scholar]
  16. Polo JM, Anderssen E, Walsh RM, et al. A Molecular roadmap of reprogramming somatic cells into iPS cells. Cell 2012 ; 151 : 1617–1632. [CrossRef] [PubMed] [Google Scholar]
  17. Sridharan R, Tchieu J, Mason MJ, et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 2009 ; 136 : 364–377. [CrossRef] [PubMed] [Google Scholar]
  18. Chen X, Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008 ; 133 : 1106–1117. [CrossRef] [PubMed] [Google Scholar]
  19. Golipour A, David L, Liu Y, et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 2012 ; 11 : 769–782. [CrossRef] [PubMed] [Google Scholar]
  20. Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 2012 ; 151 : 994–1004. [CrossRef] [PubMed] [Google Scholar]
  21. Martello G, Sugimoto T, Diamanti E, et al. Esrrb is a pivotal target of the gsk3/tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 2012 ; 11 : 491–504. [CrossRef] [PubMed] [Google Scholar]
  22. Festuccia N, Osorno R, Halbritter F, et al. Esrrb Is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell 2012 ; 11 : 477–490. [CrossRef] [PubMed] [Google Scholar]
  23. Carey BW, Markoulaki S, Hanna JH, et al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 2011 ; 9 : 588–598. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.