Free Access
Med Sci (Paris)
Volume 29, Number 4, Avril 2013
Page(s) 397 - 403
Section M/S Revues
Published online 26 April 2013
  1. Despeignes V. Observation concernant un cas de cancer de l’estomac traité par les rayons Roentgen. Lyon Medical 1896 ; 428–430. [Google Scholar]
  2. Mould RF. X-rays in 1896–1897. Nowotwory J Oncol 2011 ; 61 : 100–109. [Google Scholar]
  3. Curie P, Becquerel H. Action physiologique des rayons du radium. CR Acad Sci, 1901 ; 82 : 1289. [Google Scholar]
  4. Bouchacourt ML. Sur la différence de sensibilité aux rayons de Röntgen de la peau des différents sujets et, sur le même sujet des différentes régions du corps. In : Comptes rendus des sessions de l’association française pour l’avancement des sciences, 40 Congrès, Dijon, 1911. Paris : Masson, 1912 : 942–947. [Google Scholar]
  5. Sciences AFplAd. Association française pour l’avancement des sciences. In : Compte rendu de la 35e session Électricité médicale, Lyon, 1906. Paris : Masson, 1907 : 243–248. [Google Scholar]
  6. L’unité Gray. Résolution n° 9. In : Comptes rendus de la 15e conférence générale des poids et mesures (1975). Paris : Masson, 1976 : 105. [Google Scholar]
  7. Puck TT, Marcus PI. Action of X-rays on mammalian cells. J Exp Med 1956 ; 103 : 653–666. [CrossRef] [PubMed] [Google Scholar]
  8. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961 ; 25 : 585–621. [CrossRef] [PubMed] [Google Scholar]
  9. Hewitt HB, Wilson CW. A survival curve for mammalian cells irradiated in vivo. Nature 1959 ; 183 : 1060–1061. [CrossRef] [PubMed] [Google Scholar]
  10. Fertil B, Malaise EP. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int J Radiat Oncol Biol Phys 1981 ; 7 : 621–629. [CrossRef] [PubMed] [Google Scholar]
  11. Pritchard J, Sandland M, Breatnach F, et al. The effect of radiation therapy for Hodgkin’s disease in a child with ataxia telangiectasia: a clinical, biological and pathologic study. Cancer 1982 ; 50 : 877–886. [CrossRef] [PubMed] [Google Scholar]
  12. Taylor AM, Harnden DG, Arlett CF, et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 1975 ; 258 : 427–429. [CrossRef] [PubMed] [Google Scholar]
  13. Deschavanne PJ, Fertil B. A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys 1996 ; 34 : 251–266. [CrossRef] [PubMed] [Google Scholar]
  14. Granzotto A, Joubert A, Viau M, et al. Réponse individuelle aux radiations ionisantes : quel(s) test(s) prédictif(s) choisir ? CR Acad Sci 2011 ; 334 : 140–157. [Google Scholar]
  15. Ozsahin M, Crompton NE, Gourgou S, et al. CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clin Cancer Res 2005 ; 11 : 7426–7433. [CrossRef] [PubMed] [Google Scholar]
  16. Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 1999 ; 59 : 1391–1399. [PubMed] [Google Scholar]
  17. Supiot S, Paris F. Radiobiologie appliquée à l’endothelium. Cancer Radiother 2012 ; 16 : 11–15. [CrossRef] [PubMed] [Google Scholar]
  18. Barnett GC, Coles CE, Elliott RM, et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol 2012 ; 13 : 65–77. [CrossRef] [PubMed] [Google Scholar]
  19. Zschenker O, Raabe A, Boeckelmann IK, et al. Association of single nucleotide polymorphisms in ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with clinical and cellular radiosensitivity. Radiother Oncol 2010 ; 97 : 26–32. [CrossRef] [PubMed] [Google Scholar]
  20. Foray N, Verrelle P. Réparations et réparatoses : entre modèles moléculaires et réalité clinique. Bull Cancer 2011 ; 98 : 257–275. [PubMed] [Google Scholar]
  21. Joubert A, Gamo K, Bencokova Z, et al. DNA double-strand break repair defects in syndromes associated with acute radiation response: at least two different assays to predict intrinsic radiosensitivity ? Int J RadiatBiol 2008 ; 84 : 1–19. [Google Scholar]
  22. Joubert A, Foray N. Radiosensibilité intrinsèque et cassures double-brin de l’ADN dans les cellules humaines. Cancer Radiother 2007 ; 11 : 129–142. [CrossRef] [PubMed] [Google Scholar]
  23. Jeggo PA, Lobrich M. DNA double-strand breaks: their cellular and clinical impact? Oncogene 2007 ; 26 : 7717–7719. [CrossRef] [PubMed] [Google Scholar]
  24. Joubert A, Foray N. Repair of radiation-induced DNA double-strand breaks in human cells: history, progress and controversies. In : Landseer BR, ed. New research on DNA repair, chapter 10. Hauppauge NY : Nova Science Publishers, Inc, 2006. [Google Scholar]
  25. Foray N, Randrianarison V, Marot D, et al. Gamma-rays-induced death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene 1999 ; 18 : 7334–7342. [CrossRef] [PubMed] [Google Scholar]
  26. ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP 2007 ; 37 : 1–332. [Google Scholar]
  27. Ash D. Lessons from Epinal. Clin Oncol (R Coll Radiol) 2007 ; 19 : 614–615. [CrossRef] [PubMed] [Google Scholar]
  28. Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 1991 ; 325 : 1831–1836. [CrossRef] [PubMed] [Google Scholar]
  29. Gentner N, Morrison D, Myers D. Impact on radiogenic cancer risk of persons exhibiting abnormal sensitivity to ionizing radiation. Health Physics 1988 ; 55 : 415–425. [CrossRef] [PubMed] [Google Scholar]
  30. Gutiérrez-Enríquez S, Fernet M, Dörk T, et al. Functional consequences of ATM sequence variants for chromosomal radiosensitivity. Genes Chromosomes Cancer 2004 ; 40 : 109–119. [CrossRef] [PubMed] [Google Scholar]
  31. Tubiana M. Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the joint report of the Académie des Sciences (Paris) and of the Académie Nationale de Médecine. Int J Radiat Oncol Biol Phys 2005 ; 63 : 317–319. [CrossRef] [PubMed] [Google Scholar]
  32. Granzotto A, Devic C, Viau M, et al. Individual susceptibility to radiosensitivity, to genomic instability: its impact on low doses phenomena. Health Physics , 2011 ; 100 : 282. [CrossRef] [PubMed] [Google Scholar]
  33. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 2003 ; 100 : 5057–5062. [CrossRef] [Google Scholar]
  34. Marples B, Collis SJ. Low-dose hyper-radiosensitivity: past, present, and future. Int J Radiat Oncol Biol Phys 2008 ; 70 : 1310–1318. [CrossRef] [PubMed] [Google Scholar]
  35. Thomas C, Charrier J, Massart C, et al. Low-dose hyper-radiosensitivity of progressive and regressive cells isolated from a rat colon tumour: impact of DNA repair. Int J Radiat Biol 2008 ; 84 : 533–548. [CrossRef] [PubMed] [Google Scholar]
  36. Colin C, Foray N. DNA damage induced by mammography in high family risk patients: Only one single view in screening. Breast 2012 ; 21 : 409–410. [CrossRef] [PubMed] [Google Scholar]
  37. Colin C, Devic C, Noël A, et al. DNA double-strand breaks induced by mammographic screening procedures in human mammary epithelial cells. Int J Radiat Biol 2011 ; 87 : 1103–1112. [CrossRef] [PubMed] [Google Scholar]
  38. Saintigny Y, Monnat R. Hélicase RecQ, syndrome de Werner, et réparation de l’ADN par recombinaison homologue. Med Sci (Paris) 2002 ; 18 : 79–85. [CrossRef] [EDP Sciences] [Google Scholar]
  39. Buisson R, Masson JY. Fonction des suppresseurs de tumeur PALB2 et BRCA2 dans la réparation de cassures double-brin de l’ADN. Med Sci (Paris) 2013 ; 29 : 301–307. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.