Free Access
Issue
Med Sci (Paris)
Volume 29, Number 3, Mars 2013
Page(s) 309 - 316
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013293018
Published online 27 March 2013
  1. Martínez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 2011 ; 51 : 17–29. [CrossRef] [PubMed] [Google Scholar]
  2. Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 2012 ; 287 : 4411–4418. [CrossRef] [PubMed] [Google Scholar]
  3. Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT. On the origins of nitric oxide. Trends Plant Sci 2011 ; 16 : 160–168. [CrossRef] [PubMed] [Google Scholar]
  4. Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 2008 ; 59 : 21–39. [CrossRef] [PubMed] [Google Scholar]
  5. Yamasaki H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 1999 ; 4 : 128–129. [CrossRef] [PubMed] [Google Scholar]
  6. Corpas FJ, Palma JM, del Río LA, Barroso JB. Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 2009 ; 184 : 9–14. [CrossRef] [PubMed] [Google Scholar]
  7. Foresi N, Correa-Aragunde N, Parisi G, et al. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 2010 ; 22 : 3816–3830. [CrossRef] [PubMed] [Google Scholar]
  8. Fröhlich A, Durner J. The hunt for plant nitric oxide synthase (NOS): is one really needed?. Plant Sci 2011 ; 181 : 401–404. [CrossRef] [PubMed] [Google Scholar]
  9. Planchet E, Kaiser WM. Nitric oxide production in plants: facts and fictions. Plant Signal Behav 2006 ; 1 : 46–51. [CrossRef] [PubMed] [Google Scholar]
  10. Monaghan J, Zipfel C. Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 2012 ; 15 : 349–357. [CrossRef] [PubMed] [Google Scholar]
  11. Bernoux M, Ellis JG, Dodds PN. New insights in plant immunity signaling activation. Curr Opin Plant Biol 2011 ; 14 : 512–518. [CrossRef] [PubMed] [Google Scholar]
  12. Jones JD, Dangl JL. The plant immune system. Nature 2006 ; 444 : 323–329. [CrossRef] [PubMed] [Google Scholar]
  13. Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ 2011 ; 18 : 1247–1256. [CrossRef] [PubMed] [Google Scholar]
  14. Spoel SH, Dong X. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 2012 ; 25 : 89–100. [CrossRef] [Google Scholar]
  15. Thomma BP, Nürnberger T, Joosten MH. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 2011 ; 23 : 4–15. [CrossRef] [PubMed] [Google Scholar]
  16. Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 1998 ; 95 : 10328–10333. [CrossRef] [Google Scholar]
  17. Delledonne M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature 1998 ; 394 : 585–588. [CrossRef] [PubMed] [Google Scholar]
  18. Vandelle E, Delledonne M. Peroxynitrite formation and function in plants. Plant Sci 2011 ; 181 : 534–539. [CrossRef] [PubMed] [Google Scholar]
  19. Rasul S, Dubreuil-Maurizi C, Lamotte O, et al. Nitric oxide production mediates oligogalacturonides-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 2012 ; 35 : 1483–1499. [CrossRef] [PubMed] [Google Scholar]
  20. Ma W, Berkowitz GA. Ca2+ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades. New Phytol 2011 ; 190 : 566–572. [CrossRef] [PubMed] [Google Scholar]
  21. Asai S, Yoshioka H. Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol Plant Microbe Interact 2009 ; 22 : 619–629. [CrossRef] [PubMed] [Google Scholar]
  22. Gaupels F, Kuruthukulangarakoola GT, Durner J. Upstream and downstream signals of nitric oxide in pathogen defence. Curr Opin Plant Biol 2011 ; 14 : 707–714. [CrossRef] [PubMed] [Google Scholar]
  23. Jaffrey SR, Erdjument-Bromage H, Ferris CD, et al. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 2001 ; 3 : 193–197. [CrossRef] [PubMed] [Google Scholar]
  24. Romero-Puertas MC, Laxa M, Matte A, et al. S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 2007 ; 19 : 4120–4130. [CrossRef] [PubMed] [Google Scholar]
  25. Belenghi B, Romero-Puertas MC, Vercammen D, et al. Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 2007 ; 282 : 1352–1358. [CrossRef] [PubMed] [Google Scholar]
  26. Wawer I, Bucholc M, Astier J, et al. Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. Biochem J 2010 ; 429 : 73–83. [CrossRef] [PubMed] [Google Scholar]
  27. Wang YQ, Feechan A, Yun BW, et al. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 2009 ; 284 : 2131–2137. [CrossRef] [PubMed] [Google Scholar]
  28. Lindermayr C, Saalbach G, Bahnweg G, Durner J. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 2006 ; 281 : 4285–4291. [CrossRef] [PubMed] [Google Scholar]
  29. Tada Y, Spoel SH, Pajerowska-Mukhtar K, et al. Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 2008 ; 321 : 952–956. [CrossRef] [PubMed] [Google Scholar]
  30. Lindermayr C, Sell S, Muller B, et al. Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 2010 ; 22 : 2894–2907. [CrossRef] [PubMed] [Google Scholar]
  31. Yun BW, Feechan A, Yin M, et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 2011 ; 478 : 264–268. [CrossRef] [PubMed] [Google Scholar]
  32. Astier J, Besson-Bard A, Lamotte O, et al. Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ATPase CDC48, a target for S-nitrosylation in cryptogein signaling in tobacco cells. Biochem J 2012 ; 447 : 249–260. [CrossRef] [PubMed] [Google Scholar]
  33. Dong X. NPR1, all things considered. Curr Opin Plant Biol 2004 ; 7 : 547–552. [CrossRef] [PubMed] [Google Scholar]
  34. Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci 2012 ; 17 : 9–15. [CrossRef] [PubMed] [Google Scholar]
  35. Torres MA, Dangl JL, Jones JD. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 2002 ; 99 : 517–522. [CrossRef] [Google Scholar]
  36. Romero-Puertas MC, Campostrini N, Matte A, et al. Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 2008 ; 8 : 1459–1469. [CrossRef] [PubMed] [Google Scholar]
  37. Bourque S, Dutartre A, Hammoudi V, et al. Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytol 2011 ; 192 : 127–139. [CrossRef] [PubMed] [Google Scholar]
  38. Forrester MT, Foster MW, Benhar M, Stamler JS. Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 2009 ; 46 : 119–126. [CrossRef] [PubMed] [Google Scholar]
  39. Marino SM, Gladyshev VN. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol 2010 ; 395 : 844–859. [CrossRef] [PubMed] [Google Scholar]
  40. Stasia MJ. La granulomatose chronique X+ : un fabuleux modèle d’étude de l’activation du complexe NADPH oxydase. Med Sci (Paris) 2007 ; 23 : 526–532. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.