Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 3, Mars 2013
Page(s) 309 - 316
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013293018
Publié en ligne 27 mars 2013
  1. Martínez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 2011 ; 51 : 17–29. [CrossRef] [PubMed]
  2. Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 2012 ; 287 : 4411–4418. [CrossRef] [PubMed]
  3. Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT. On the origins of nitric oxide. Trends Plant Sci 2011 ; 16 : 160–168. [CrossRef] [PubMed]
  4. Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 2008 ; 59 : 21–39. [CrossRef] [PubMed]
  5. Yamasaki H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 1999 ; 4 : 128–129. [CrossRef] [PubMed]
  6. Corpas FJ, Palma JM, del Río LA, Barroso JB. Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 2009 ; 184 : 9–14. [CrossRef] [PubMed]
  7. Foresi N, Correa-Aragunde N, Parisi G, et al. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 2010 ; 22 : 3816–3830. [CrossRef] [PubMed]
  8. Fröhlich A, Durner J. The hunt for plant nitric oxide synthase (NOS): is one really needed?. Plant Sci 2011 ; 181 : 401–404. [CrossRef] [PubMed]
  9. Planchet E, Kaiser WM. Nitric oxide production in plants: facts and fictions. Plant Signal Behav 2006 ; 1 : 46–51. [CrossRef] [PubMed]
  10. Monaghan J, Zipfel C. Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 2012 ; 15 : 349–357. [CrossRef] [PubMed]
  11. Bernoux M, Ellis JG, Dodds PN. New insights in plant immunity signaling activation. Curr Opin Plant Biol 2011 ; 14 : 512–518. [CrossRef] [PubMed]
  12. Jones JD, Dangl JL. The plant immune system. Nature 2006 ; 444 : 323–329. [CrossRef] [PubMed]
  13. Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ 2011 ; 18 : 1247–1256. [CrossRef] [PubMed]
  14. Spoel SH, Dong X. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 2012 ; 25 : 89–100. [CrossRef]
  15. Thomma BP, Nürnberger T, Joosten MH. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 2011 ; 23 : 4–15. [CrossRef] [PubMed]
  16. Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 1998 ; 95 : 10328–10333. [CrossRef]
  17. Delledonne M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature 1998 ; 394 : 585–588. [CrossRef] [PubMed]
  18. Vandelle E, Delledonne M. Peroxynitrite formation and function in plants. Plant Sci 2011 ; 181 : 534–539. [CrossRef] [PubMed]
  19. Rasul S, Dubreuil-Maurizi C, Lamotte O, et al. Nitric oxide production mediates oligogalacturonides-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 2012 ; 35 : 1483–1499. [CrossRef] [PubMed]
  20. Ma W, Berkowitz GA. Ca2+ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades. New Phytol 2011 ; 190 : 566–572. [CrossRef] [PubMed]
  21. Asai S, Yoshioka H. Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol Plant Microbe Interact 2009 ; 22 : 619–629. [CrossRef] [PubMed]
  22. Gaupels F, Kuruthukulangarakoola GT, Durner J. Upstream and downstream signals of nitric oxide in pathogen defence. Curr Opin Plant Biol 2011 ; 14 : 707–714. [CrossRef] [PubMed]
  23. Jaffrey SR, Erdjument-Bromage H, Ferris CD, et al. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 2001 ; 3 : 193–197. [CrossRef] [PubMed]
  24. Romero-Puertas MC, Laxa M, Matte A, et al. S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 2007 ; 19 : 4120–4130. [CrossRef] [PubMed]
  25. Belenghi B, Romero-Puertas MC, Vercammen D, et al. Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 2007 ; 282 : 1352–1358. [CrossRef] [PubMed]
  26. Wawer I, Bucholc M, Astier J, et al. Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. Biochem J 2010 ; 429 : 73–83. [CrossRef] [PubMed]
  27. Wang YQ, Feechan A, Yun BW, et al. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 2009 ; 284 : 2131–2137. [CrossRef] [PubMed]
  28. Lindermayr C, Saalbach G, Bahnweg G, Durner J. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 2006 ; 281 : 4285–4291. [CrossRef] [PubMed]
  29. Tada Y, Spoel SH, Pajerowska-Mukhtar K, et al. Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 2008 ; 321 : 952–956. [CrossRef] [PubMed]
  30. Lindermayr C, Sell S, Muller B, et al. Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 2010 ; 22 : 2894–2907. [CrossRef] [PubMed]
  31. Yun BW, Feechan A, Yin M, et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 2011 ; 478 : 264–268. [CrossRef] [PubMed]
  32. Astier J, Besson-Bard A, Lamotte O, et al. Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ATPase CDC48, a target for S-nitrosylation in cryptogein signaling in tobacco cells. Biochem J 2012 ; 447 : 249–260. [CrossRef] [PubMed]
  33. Dong X. NPR1, all things considered. Curr Opin Plant Biol 2004 ; 7 : 547–552. [CrossRef] [PubMed]
  34. Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci 2012 ; 17 : 9–15. [CrossRef] [PubMed]
  35. Torres MA, Dangl JL, Jones JD. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 2002 ; 99 : 517–522. [CrossRef]
  36. Romero-Puertas MC, Campostrini N, Matte A, et al. Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 2008 ; 8 : 1459–1469. [CrossRef] [PubMed]
  37. Bourque S, Dutartre A, Hammoudi V, et al. Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytol 2011 ; 192 : 127–139. [CrossRef] [PubMed]
  38. Forrester MT, Foster MW, Benhar M, Stamler JS. Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 2009 ; 46 : 119–126. [CrossRef] [PubMed]
  39. Marino SM, Gladyshev VN. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol 2010 ; 395 : 844–859. [CrossRef] [PubMed]
  40. Stasia MJ. La granulomatose chronique X+ : un fabuleux modèle d’étude de l’activation du complexe NADPH oxydase. Med Sci (Paris) 2007 ; 23 : 526–532. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.