Free Access
Issue
Med Sci (Paris)
Volume 29, Number 3, Mars 2013
Page(s) 317 - 323
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013293019
Published online 27 March 2013
  1. Amblard F, Coscoy S. Le temps, sculpteur de la cellule ? Med Sci (Paris) 2011 ; 27 : 425–431. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Trugnan G, Fontanges P, Delautier D, Ait-Slimane T. FRAP, FLIP, FRET, BRET, FLIM, PRIM… De nouvelles techniques pour voir la vie en couleur ! Med Sci (Paris) 2004 ; 20 : 1027–1034. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Tsien RY. The green fluorescent protein. Annu Rev Biochem 1998 ; 67 : 509–544. [CrossRef] [PubMed] [Google Scholar]
  4. Salamero J. La « révolution-verte » est en marche. Med Sci (Paris) 2008 ; 24 : 987–988. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Dufour P, Dufour S, Castonguay A, et al. Microscopie à deux photons pour l’imagerie cellulaire fonctionnelle : avantages et enjeux ou un photon c’est bien… mais deux c’est mieux ! Med Sci (Paris) 2006 ; 22 : 837–844. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990 ; 248 : 73–76. [CrossRef] [PubMed] [Google Scholar]
  7. Mortimer D, Fothergill T, Pujic Z, et al. Growth cone chemotaxis. Trends Neurosci 2008 ; 31 : 90–98. [CrossRef] [PubMed] [Google Scholar]
  8. Niesner RA, Hauser AE. Recent advances in dynamic intravital multi-photon microscopy. Cytometry A 2011 ; 79 : 789–798. [CrossRef] [PubMed] [Google Scholar]
  9. Beerling E, Ritsma L, Vrisekoop N, et al. Intravital microscopy: new insights into metastasis of tumors. J Cell Sci 2011 ; 124 : 299–310. [CrossRef] [PubMed] [Google Scholar]
  10. Lavigne AM, Carriere V, Amalric F, et al. Apports de la microscopie réalisée in situ sur animal vivant dans l’étude du cancer. Med Sci (Paris) 2002 ; 18 : 217–225. [CrossRef] [EDP Sciences] [Google Scholar]
  11. Van Haastert PJ. Chemotaxis: insights from the extending pseudopod. J Cell Sci 2010 ; 123 : 3031–3037. [CrossRef] [PubMed] [Google Scholar]
  12. Dustin ML. Visualizing immune system complexity. Sci Signal 2009 ; 2 : mr4. [CrossRef] [PubMed] [Google Scholar]
  13. Garrido-Urbani S, Bradfield PF, Lee BP, Imhof BA. Vascular and epithelial junctions: a barrier for leucocyte migration. Biochem Soc Trans 2008 ; 36 : 203–211. [CrossRef] [PubMed] [Google Scholar]
  14. Boissonnas A, Fetler L, Zeelenberg IS, et al. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 2007 ; 204 : 345–356. [CrossRef] [PubMed] [Google Scholar]
  15. Breart B, Lemaitre F, Celli S, Bousso P. Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 2008 ; 118 : 1390–1397. [CrossRef] [PubMed] [Google Scholar]
  16. Sergé A, de Keijzer S, Van Hemert F, et al. Quantification of GPCR internalization by single-molecule microscopy in living cells. Integrative biology: quantitative biosciences from nano to macro 2011 ; 3 : 675–683. [CrossRef] [Google Scholar]
  17. Seisenberger G, Ried MU, Endress T, et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001 ; 294 : 1929–1932. [CrossRef] [PubMed] [Google Scholar]
  18. Schmidt T, Schutz GJ, Baumgartner W, et al. Imaging of single molecule diffusion. Proc Natl Acad Sci USA 1996 ; 93 : 2926–2929. [CrossRef] [Google Scholar]
  19. Serge A, Bertaux N, Rigneault H, Marguet D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 2008 ; 5 : 687–694. [CrossRef] [PubMed] [Google Scholar]
  20. Rouger V, Bertaux N, Trombik T, et al. Mapping molecular diffusion in the plasma membrane by Multiple-Target Tracing (MTT). J Vis Exp 2012 ; 27 : e3599. [Google Scholar]
  21. Meilhac N, Le Guyader L, Salome L, Destainville N. Detection of confinement, jumps in single-molecule membrane trajectories. Phys Rev E Stat Nonlin Soft Matter Phys 2006 ; 73 : 011915. [CrossRef] [PubMed] [Google Scholar]
  22. Simson R, Sheets ED, Jacobson K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J 1995 ; 69 : 989–993. [CrossRef] [PubMed] [Google Scholar]
  23. Gao X, Chung LW, Nie S. Quantum dots for in vivo molecular and cellular imaging. Methods Mol Biol 2007 ; 374 : 135–146. [PubMed] [Google Scholar]
  24. Izeddin I, Darzacq X, Dahan M. Microscopies cellulaires à l’échelle de la molécule individuelle. Med Sci (Paris) 2011 ; 27 : 547–552. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. Cebecauer M, Spitaler M, Sergé A, Magee AI. Signalling complexes and clusters: functional advantages and methodological hurdles. J Cell Sci 2010 ; 123 : 309–320. [CrossRef] [PubMed] [Google Scholar]
  26. Kao HP, Verkman AS. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 1994 ; 67 : 1291–1300. [CrossRef] [PubMed] [Google Scholar]
  27. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994 ; 19 : 780–782. [CrossRef] [PubMed] [Google Scholar]
  28. Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006 ; 313 : 1642–1645. [CrossRef] [PubMed] [Google Scholar]
  29. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006 ; 3 : 793–795. [CrossRef] [PubMed] [Google Scholar]
  30. Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 1981 ; 89 : 141–145. [CrossRef] [PubMed] [Google Scholar]
  31. Gelles J, Schnapp BJ, Sheetz MP. Tracking kinesin-driven movements with nanometre-scale precision. Nature 1988 ; 331 : 450–453. [CrossRef] [PubMed] [Google Scholar]
  32. Meier J, Vannier C, Serge A, et al. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat Neurosci 2001 ; 4 : 253–260. [CrossRef] [PubMed] [Google Scholar]
  33. Serge A, Fourgeaud L, Hemar A, Choquet D. Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J Neurosci 2002 ; 22 : 3910–3920. [PubMed] [Google Scholar]
  34. Saxton MJ. Single-particle tracking: effects of corrals. Biophys J 1995 ; 69 : 389–398. [CrossRef] [PubMed] [Google Scholar]
  35. Rossier O, Octeau V, Sibarita JB, et al. Integrins beta(1) and beta(3) exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat Cell Biol 2012 ; 14 : 1057–1067. [CrossRef] [PubMed] [Google Scholar]
  36. Dahan M, Levi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003 ; 302 : 442–445. [CrossRef] [PubMed] [Google Scholar]
  37. Groc L, Choquet D. Instabilité dynamique de la communication neuronale : nouveau regard sur le trafic des récepteurs de surface. Med Sci (Paris) 2009 ; 25 : 895–897. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Vecchione L, Jacobs B, Normanno N, et al. EGFR-targeted therapy. Exp Cell Res 2011 ; 317 : 2765–2771. [CrossRef] [PubMed] [Google Scholar]
  39. Sako Y, Minoghchi S, Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2000 ; 2 : 168–172. [CrossRef] [PubMed] [Google Scholar]
  40. Lidke DS, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 2004 ; 22 : 198–203. [CrossRef] [PubMed] [Google Scholar]
  41. Schmidt T, Schutz GJ, Gruber HJ, Schindler H. Local stoichiometries determined by counting individual molecules. Anal Chem 1996 ; 68 : 4397–4401. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.