Free Access
Issue
Med Sci (Paris)
Volume 29, Number 2, Février 2013
Page(s) 200 - 205
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013292019
Published online 28 February 2013
  1. Dutcher JP. Mammalian target of rapamycin inhibition. Clin Cancer Res 2004 ; 10 : 6382S–6387S. [CrossRef] [PubMed] [Google Scholar]
  2. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991 ; 253 : 905–909. [CrossRef] [PubMed] [Google Scholar]
  3. Sabatini DM, Erdjument-Bromage H, Lui M, et al. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994 ; 78 : 35–43. [CrossRef] [PubMed] [Google Scholar]
  4. Murakami M, Ichisaka T, Maeda M, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 2004 ; 24 : 6710–6718. [CrossRef] [PubMed] [Google Scholar]
  5. Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components raptor, rictor or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCa, but not S6K1. Dev Cell 2006 ; 11 : 859–871. [CrossRef] [PubMed] [Google Scholar]
  6. Monget P. Régulation endocrine et paracrine de la folliculogenèse. Med Sci (Paris) 1999 ; 15 : 141–147. [CrossRef] [Google Scholar]
  7. Froment P, Holzenberger M, Monget P. Insuline, métabolisme énergétique et fertilité Med Sci (Paris) 2001 ; 17 : 817–818. [CrossRef] [Google Scholar]
  8. Froment P, Gizard F, Staels B, et al. Un rôle pour PPARγ dans la reproduction ? Med Sci (Paris) 2005 ; 21 : 507–511. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Tosca L, Chabrolle C, Dupont J. L’AMPK : un lien entre métabolisme et reproduction ? Med Sci (Paris) 2008 ; 24 : 297–300. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Zuber J, Anglicheau D, Elie C, et al. Sirolimus may reduce fertility in male renal transplant recipients. Am J Transplant 2008 ; 8 : 1471–1479. [CrossRef] [PubMed] [Google Scholar]
  11. Gill JS, Zalunardo N, Rose C, et al. The pregnancy rate and live birth rate in kidney transplant recipients. Am J Transplant 2009 ; 9 : 1541–1549. [CrossRef] [PubMed] [Google Scholar]
  12. Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006 ; 22 : 159–168. [CrossRef] [PubMed] [Google Scholar]
  13. Huyghe E, Zairi A, Nohra J, et al. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview. Transpl Int 2007 ; 20 : 305–311. [CrossRef] [PubMed] [Google Scholar]
  14. Bererhi L, Flamant M, Martinez F, et al. Rapamycin-induced oligospermia. Transplantation 2003 ; 76 : 885–886. [CrossRef] [PubMed] [Google Scholar]
  15. Skrypek J, Krause W. Azoospermia in a renal transplant recipient during sirolimus (rapamycin) treatment. Andrologia 2007 ; 39 : 198–199. [CrossRef] [PubMed] [Google Scholar]
  16. Feng LX, Ravindranath N, Dym M. Stem cell factor/c-kit Up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3 kinase/p70 S6 kinase pathway in spermatogonia. J Biol Chem 2000 ; 275 : 25572–25576. [CrossRef] [PubMed] [Google Scholar]
  17. Musnier A, Leon K, Morales J, et al. mRNA-selective translation induced by FSH in primary Sertoli cells. Mol Endocrinol 2012 ; 26 : 669–680. [CrossRef] [PubMed] [Google Scholar]
  18. Fumel B, Sow A, Fouchécourt S, et al. Une nouvelle fonction pour la transferrine exprimée par le testicule. Andrologie (Paris) 2009 ; 19 : 81–89. [Google Scholar]
  19. Li WR, Chen L, Chang ZJ, et al. Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian J Andro 2011 ; 13 : 881–888. [CrossRef] [Google Scholar]
  20. Cure P, Pileggi A, Froud T, et al. Alterations of the female reproductive system in recipients of islet grafts. Transplantation 2004 ; 78 : 1576–1581. [CrossRef] [PubMed] [Google Scholar]
  21. Braun M, Young J, Reiner CS, et al. Ovarian toxicity from sirolimus. N Engl J Med 2012 ; 366 : 1062–1064. [CrossRef] [PubMed] [Google Scholar]
  22. Kayampilly PP, Menon KM. Follicle-stimulating hormone increases tuberin phosphorylation and mammalian target of rapamycin signaling through an extracellular signal-regulated kinase-dependent pathway in rat granulosa cells. Endocrinology 2007 ; 148 : 3950–3957. [CrossRef] [PubMed] [Google Scholar]
  23. Palaniappan M, Menon KM. Human chorionic gonadotropin stimulates theca-interstitial cell proliferation and cell cycle regulatory proteins by a cAMP-dependent activation of Akt/mTORC1 signaling pathway. Mol Endocrinol 2010 ; 24 : 1782–1793. [CrossRef] [PubMed] [Google Scholar]
  24. Yu J, Yaba A, Kasiman C, et al. mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS One 2011 ; 6 : e21415. [CrossRef] [PubMed] [Google Scholar]
  25. McLaughlin M, Patrizio P, Kayisli U, et al. mTOR kinase inhibition results in oocyte loss characterized by empty follicles in human ovarian cortical strips cultured in vitro. Fertil Steril 2011 ; 96 : 1154–1159. [CrossRef] [PubMed] [Google Scholar]
  26. Alam H, Maizels ET, Park Y, et al. Follicle-stimulating hormone activation of hypoxia-inducible factor 1 by phosphatidylinositol 3 kinase/Akt/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem 2004 ; 279 : 19431–19440. [CrossRef] [PubMed] [Google Scholar]
  27. Shivaswamy V, Ochsner L, Maroni D, et al. Tacrolimus and sirolimus induce reproductive abnormalities in female rats. Transplantation 2011 ; 91 : 1333–1339. [CrossRef] [PubMed] [Google Scholar]
  28. Mabuchi S, Altomare DA, Connolly DC, et al. RAD001 (everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 2007 ; 67 : 2408–2413. [CrossRef] [PubMed] [Google Scholar]
  29. Maira SM, Stauffer F, Brueggen J, et al. Identification and development of NVP-BEZ235, a new orally available dual PI3K/mTOR inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008 ; 7 : 1851–1863. [CrossRef] [PubMed] [Google Scholar]
  30. Roa J, Garcia-Galiano D, Varela L, et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 2009 ; 150 : 5016–5026. [CrossRef] [PubMed] [Google Scholar]
  31. Julien LA, Roux PP. mTOR, la cible fonctionnelle de la rapamycine. Med Sci (Paris) 2010 ; 26 : 1056–1060. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Pallet N, Beaune P, Thervet E, et al. Inhibiteurs de mTOR : Des antiprolifératifs pléiotropiques. Med Sci (Paris) 2006 ; 22 : 947–952. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Le Bacquer O, Martineau Y, Mamane Y. Quand la traduction sort de sa TORpeur. Med Sci (Paris) 2006 ; 22 : 514–518. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Greenland C, Delsol G, Payrastre B. La kinase FRAP/mTOR : une nouvelle cible dans le traitement des cancers dépendants de la voie PI3-kinase/PTEN. Med Sci (Paris) 2002 ; 18 : 137–139. [CrossRef] [EDP Sciences] [Google Scholar]
  35. Joly D. Inhibition thérapeutique de mTOR dans la polykystose rénale autosomique dominante. Med Sci (Paris) 2011 ; 27 : 249–251. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.