Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 2, Février 2013
Page(s) 200 - 205
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013292019
Publié en ligne 28 février 2013
  1. Dutcher JP. Mammalian target of rapamycin inhibition. Clin Cancer Res 2004 ; 10 : 6382S–6387S. [CrossRef] [PubMed] [Google Scholar]
  2. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991 ; 253 : 905–909. [CrossRef] [PubMed] [Google Scholar]
  3. Sabatini DM, Erdjument-Bromage H, Lui M, et al. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994 ; 78 : 35–43. [CrossRef] [PubMed] [Google Scholar]
  4. Murakami M, Ichisaka T, Maeda M, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 2004 ; 24 : 6710–6718. [CrossRef] [PubMed] [Google Scholar]
  5. Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components raptor, rictor or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCa, but not S6K1. Dev Cell 2006 ; 11 : 859–871. [CrossRef] [PubMed] [Google Scholar]
  6. Monget P. Régulation endocrine et paracrine de la folliculogenèse. Med Sci (Paris) 1999 ; 15 : 141–147. [CrossRef] [Google Scholar]
  7. Froment P, Holzenberger M, Monget P. Insuline, métabolisme énergétique et fertilité Med Sci (Paris) 2001 ; 17 : 817–818. [CrossRef] [Google Scholar]
  8. Froment P, Gizard F, Staels B, et al. Un rôle pour PPARγ dans la reproduction ? Med Sci (Paris) 2005 ; 21 : 507–511. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Tosca L, Chabrolle C, Dupont J. L’AMPK : un lien entre métabolisme et reproduction ? Med Sci (Paris) 2008 ; 24 : 297–300. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Zuber J, Anglicheau D, Elie C, et al. Sirolimus may reduce fertility in male renal transplant recipients. Am J Transplant 2008 ; 8 : 1471–1479. [CrossRef] [PubMed] [Google Scholar]
  11. Gill JS, Zalunardo N, Rose C, et al. The pregnancy rate and live birth rate in kidney transplant recipients. Am J Transplant 2009 ; 9 : 1541–1549. [CrossRef] [PubMed] [Google Scholar]
  12. Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006 ; 22 : 159–168. [CrossRef] [PubMed] [Google Scholar]
  13. Huyghe E, Zairi A, Nohra J, et al. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview. Transpl Int 2007 ; 20 : 305–311. [CrossRef] [PubMed] [Google Scholar]
  14. Bererhi L, Flamant M, Martinez F, et al. Rapamycin-induced oligospermia. Transplantation 2003 ; 76 : 885–886. [CrossRef] [PubMed] [Google Scholar]
  15. Skrypek J, Krause W. Azoospermia in a renal transplant recipient during sirolimus (rapamycin) treatment. Andrologia 2007 ; 39 : 198–199. [CrossRef] [PubMed] [Google Scholar]
  16. Feng LX, Ravindranath N, Dym M. Stem cell factor/c-kit Up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3 kinase/p70 S6 kinase pathway in spermatogonia. J Biol Chem 2000 ; 275 : 25572–25576. [CrossRef] [PubMed] [Google Scholar]
  17. Musnier A, Leon K, Morales J, et al. mRNA-selective translation induced by FSH in primary Sertoli cells. Mol Endocrinol 2012 ; 26 : 669–680. [CrossRef] [PubMed] [Google Scholar]
  18. Fumel B, Sow A, Fouchécourt S, et al. Une nouvelle fonction pour la transferrine exprimée par le testicule. Andrologie (Paris) 2009 ; 19 : 81–89. [Google Scholar]
  19. Li WR, Chen L, Chang ZJ, et al. Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian J Andro 2011 ; 13 : 881–888. [CrossRef] [Google Scholar]
  20. Cure P, Pileggi A, Froud T, et al. Alterations of the female reproductive system in recipients of islet grafts. Transplantation 2004 ; 78 : 1576–1581. [CrossRef] [PubMed] [Google Scholar]
  21. Braun M, Young J, Reiner CS, et al. Ovarian toxicity from sirolimus. N Engl J Med 2012 ; 366 : 1062–1064. [CrossRef] [PubMed] [Google Scholar]
  22. Kayampilly PP, Menon KM. Follicle-stimulating hormone increases tuberin phosphorylation and mammalian target of rapamycin signaling through an extracellular signal-regulated kinase-dependent pathway in rat granulosa cells. Endocrinology 2007 ; 148 : 3950–3957. [CrossRef] [PubMed] [Google Scholar]
  23. Palaniappan M, Menon KM. Human chorionic gonadotropin stimulates theca-interstitial cell proliferation and cell cycle regulatory proteins by a cAMP-dependent activation of Akt/mTORC1 signaling pathway. Mol Endocrinol 2010 ; 24 : 1782–1793. [CrossRef] [PubMed] [Google Scholar]
  24. Yu J, Yaba A, Kasiman C, et al. mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS One 2011 ; 6 : e21415. [CrossRef] [PubMed] [Google Scholar]
  25. McLaughlin M, Patrizio P, Kayisli U, et al. mTOR kinase inhibition results in oocyte loss characterized by empty follicles in human ovarian cortical strips cultured in vitro. Fertil Steril 2011 ; 96 : 1154–1159. [CrossRef] [PubMed] [Google Scholar]
  26. Alam H, Maizels ET, Park Y, et al. Follicle-stimulating hormone activation of hypoxia-inducible factor 1 by phosphatidylinositol 3 kinase/Akt/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem 2004 ; 279 : 19431–19440. [CrossRef] [PubMed] [Google Scholar]
  27. Shivaswamy V, Ochsner L, Maroni D, et al. Tacrolimus and sirolimus induce reproductive abnormalities in female rats. Transplantation 2011 ; 91 : 1333–1339. [CrossRef] [PubMed] [Google Scholar]
  28. Mabuchi S, Altomare DA, Connolly DC, et al. RAD001 (everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 2007 ; 67 : 2408–2413. [CrossRef] [PubMed] [Google Scholar]
  29. Maira SM, Stauffer F, Brueggen J, et al. Identification and development of NVP-BEZ235, a new orally available dual PI3K/mTOR inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008 ; 7 : 1851–1863. [CrossRef] [PubMed] [Google Scholar]
  30. Roa J, Garcia-Galiano D, Varela L, et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 2009 ; 150 : 5016–5026. [CrossRef] [PubMed] [Google Scholar]
  31. Julien LA, Roux PP. mTOR, la cible fonctionnelle de la rapamycine. Med Sci (Paris) 2010 ; 26 : 1056–1060. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Pallet N, Beaune P, Thervet E, et al. Inhibiteurs de mTOR : Des antiprolifératifs pléiotropiques. Med Sci (Paris) 2006 ; 22 : 947–952. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Le Bacquer O, Martineau Y, Mamane Y. Quand la traduction sort de sa TORpeur. Med Sci (Paris) 2006 ; 22 : 514–518. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Greenland C, Delsol G, Payrastre B. La kinase FRAP/mTOR : une nouvelle cible dans le traitement des cancers dépendants de la voie PI3-kinase/PTEN. Med Sci (Paris) 2002 ; 18 : 137–139. [CrossRef] [EDP Sciences] [Google Scholar]
  35. Joly D. Inhibition thérapeutique de mTOR dans la polykystose rénale autosomique dominante. Med Sci (Paris) 2011 ; 27 : 249–251. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.