Accès gratuit
Numéro
Med Sci (Paris)
Volume 29, Numéro 2, Février 2013
Page(s) 194 - 199
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2013292018
Publié en ligne 28 février 2013
  1. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 1984 ; 312 : 237–242. [CrossRef] [PubMed]
  2. Dimitrov A, Quesnoit M, Moutel S, et al. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 2008 ; 322 : 135–136. [CrossRef]
  3. Tropini C, Roth EA, Zanic M, et al. Islands containing slowly hydrolyzable GTP analogs promote microtubule rescues. PLoS One 2012 ; 17 : e30103. [CrossRef]
  4. Thoma CR, Matov A, Gutbrodt KL, et al. Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability. J Cell Biol 2010 ; 190 : 991–1003. [CrossRef] [PubMed]
  5. Nakata T, Niwa S, Okada Y, et al. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J Cell Biol 2011 ; 194 : 245–255. [CrossRef] [PubMed]
  6. Daire V, Giustiniani J, Leroy-Gori I, et al. Kinesin-1 regulates microtubule dynamics via a c-Jun N-terminal kinase-dependent mechanism. J Biol Chem 2009 ; 284 : 31992–32001. [CrossRef] [PubMed]
  7. Janke C, Chloë Bulinski J. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011 ; 12 : 773–786. [CrossRef] [PubMed]
  8. Moutin MJ, Andrieux A, Janke C. Polyglutamylation des microtubules et neurodégénérescence. Med Sci (Paris) 2011 ; 27 : 464–467. [CrossRef] [EDP Sciences] [PubMed]
  9. Rogowski K, van Dijk J, Magiera MM, et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 2010 ; 143 : 564–578. [CrossRef] [PubMed]
  10. Peris L, Wagenbach M, Lafanechère L, et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 2009 ; 185 : 1159–1166. [CrossRef] [PubMed]
  11. Reed NA, Cai D, Blasius TL, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 2006 ; 16 : 2166–2172. [CrossRef] [PubMed]
  12. Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 2007 ; 27 : 3571–3583. [CrossRef] [PubMed]
  13. Cai D, McEwen DP, Martens JR, et al. Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLoS Biol 2009 ; 7 : e1000216. [CrossRef] [PubMed]
  14. Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol 1999 ; 11 : 81–94. [CrossRef] [PubMed]
  15. Etienne-Manneville S. From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 2009 ; 22 : 104–111. [CrossRef] [PubMed]
  16. Dong C, Li Z, Alvarez RJ, et al. Microtubule binding to Smads may regulate TGF beta activity. Mol Cell 2000 ; 5 : 27–34. [CrossRef] [PubMed]
  17. Giustiniani J, Couloubaly S, Pourci ML, et al. Basal endothelial nicric oxide synthase (eNOS) phosphorylation on Ser 1177 occurs in a stable microtubule- and tubulin acetylation-dependent manner. Exp Cell Res 2009 ; 315 : 3509–3520. [CrossRef] [PubMed]
  18. Giannakakou P, Nakano M, Nicolaou KC, et al. Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc Natl Acad Sci USA 2002 ; 99 : 10855–10860. [CrossRef]
  19. Giustiniani J, Daire V, Cantaloube I, et al. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal 2009 ; 21 : 529–539. [CrossRef] [PubMed]
  20. Geeraert C, Ratier A, Pfisterer SG, et al. Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J Biol Chem 2010 ; 285 : 24184–24194. [CrossRef] [PubMed]
  21. Perdiz D, Mackeh R, Poüs C, Baillet A. The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal 2010 ; 23 : 763–771. [CrossRef] [PubMed]
  22. Cueva JG, Hsin J, Huang KC, Goodman MB. Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr Biol 2012 ; 22 : 1066–1074. [CrossRef] [PubMed]
  23. Topalidou I, Keller C, Kalebic N, et al. Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization. Curr Biol 2012 ; 22 : 1057–1065. [CrossRef] [PubMed]
  24. Bulinski JC, Richards JE, Piperno G. Posttranslational modifications of alpha tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J Cell Biol 1988 ; 106 : 1213–1220. [CrossRef] [PubMed]
  25. Chabin-Brion K, Marceiller J, Perez F, et al. The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 2001 ; 12 : 2047–2060. [PubMed]
  26. Kodani A, Sütterlin C. The Golgi protein GM130 regulates centrosome morphology and function. Mol Biol Cell 2008 ; 19 : 745–753. [CrossRef] [PubMed]
  27. Efimov A, Kharitonov A, Efimova N, et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 2007 ; 12 : 917–930. [CrossRef] [PubMed]
  28. Miller PM, Folkmann AW, Maia ARR, et al. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 2009 ; 11 : 1069–1080. [CrossRef] [PubMed]
  29. Infante AS, Stein MS, Zhai Y, et al. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J Cell Sci 2000 ; 113 : 3907–3919. [PubMed]
  30. Marceiller J, Drechou A, Durand G, et al. Kinesin is involved in protecting nascent microtubules from disassembly after recovery from nocodazole treatment. Exp Cell Res 2005 ; 304 : 483–492. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.