Free Access
Med Sci (Paris)
Volume 29, Number 2, Février 2013
Page(s) 194 - 199
Section M/S Revues
Published online 28 February 2013
  1. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 1984 ; 312 : 237–242. [CrossRef] [PubMed] [Google Scholar]
  2. Dimitrov A, Quesnoit M, Moutel S, et al. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 2008 ; 322 : 135–136. [CrossRef] [Google Scholar]
  3. Tropini C, Roth EA, Zanic M, et al. Islands containing slowly hydrolyzable GTP analogs promote microtubule rescues. PLoS One 2012 ; 17 : e30103. [CrossRef] [Google Scholar]
  4. Thoma CR, Matov A, Gutbrodt KL, et al. Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability. J Cell Biol 2010 ; 190 : 991–1003. [CrossRef] [PubMed] [Google Scholar]
  5. Nakata T, Niwa S, Okada Y, et al. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J Cell Biol 2011 ; 194 : 245–255. [CrossRef] [PubMed] [Google Scholar]
  6. Daire V, Giustiniani J, Leroy-Gori I, et al. Kinesin-1 regulates microtubule dynamics via a c-Jun N-terminal kinase-dependent mechanism. J Biol Chem 2009 ; 284 : 31992–32001. [CrossRef] [PubMed] [Google Scholar]
  7. Janke C, Chloë Bulinski J. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011 ; 12 : 773–786. [CrossRef] [PubMed] [Google Scholar]
  8. Moutin MJ, Andrieux A, Janke C. Polyglutamylation des microtubules et neurodégénérescence. Med Sci (Paris) 2011 ; 27 : 464–467. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Rogowski K, van Dijk J, Magiera MM, et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 2010 ; 143 : 564–578. [CrossRef] [PubMed] [Google Scholar]
  10. Peris L, Wagenbach M, Lafanechère L, et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 2009 ; 185 : 1159–1166. [CrossRef] [PubMed] [Google Scholar]
  11. Reed NA, Cai D, Blasius TL, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 2006 ; 16 : 2166–2172. [CrossRef] [PubMed] [Google Scholar]
  12. Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 2007 ; 27 : 3571–3583. [CrossRef] [PubMed] [Google Scholar]
  13. Cai D, McEwen DP, Martens JR, et al. Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLoS Biol 2009 ; 7 : e1000216. [CrossRef] [PubMed] [Google Scholar]
  14. Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol 1999 ; 11 : 81–94. [CrossRef] [PubMed] [Google Scholar]
  15. Etienne-Manneville S. From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 2009 ; 22 : 104–111. [CrossRef] [PubMed] [Google Scholar]
  16. Dong C, Li Z, Alvarez RJ, et al. Microtubule binding to Smads may regulate TGF beta activity. Mol Cell 2000 ; 5 : 27–34. [CrossRef] [PubMed] [Google Scholar]
  17. Giustiniani J, Couloubaly S, Pourci ML, et al. Basal endothelial nicric oxide synthase (eNOS) phosphorylation on Ser 1177 occurs in a stable microtubule- and tubulin acetylation-dependent manner. Exp Cell Res 2009 ; 315 : 3509–3520. [CrossRef] [PubMed] [Google Scholar]
  18. Giannakakou P, Nakano M, Nicolaou KC, et al. Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics. Proc Natl Acad Sci USA 2002 ; 99 : 10855–10860. [CrossRef] [Google Scholar]
  19. Giustiniani J, Daire V, Cantaloube I, et al. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal 2009 ; 21 : 529–539. [CrossRef] [PubMed] [Google Scholar]
  20. Geeraert C, Ratier A, Pfisterer SG, et al. Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J Biol Chem 2010 ; 285 : 24184–24194. [CrossRef] [PubMed] [Google Scholar]
  21. Perdiz D, Mackeh R, Poüs C, Baillet A. The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal 2010 ; 23 : 763–771. [Google Scholar]
  22. Cueva JG, Hsin J, Huang KC, Goodman MB. Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr Biol 2012 ; 22 : 1066–1074. [CrossRef] [PubMed] [Google Scholar]
  23. Topalidou I, Keller C, Kalebic N, et al. Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization. Curr Biol 2012 ; 22 : 1057–1065. [CrossRef] [PubMed] [Google Scholar]
  24. Bulinski JC, Richards JE, Piperno G. Posttranslational modifications of alpha tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J Cell Biol 1988 ; 106 : 1213–1220. [CrossRef] [PubMed] [Google Scholar]
  25. Chabin-Brion K, Marceiller J, Perez F, et al. The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 2001 ; 12 : 2047–2060. [PubMed] [Google Scholar]
  26. Kodani A, Sütterlin C. The Golgi protein GM130 regulates centrosome morphology and function. Mol Biol Cell 2008 ; 19 : 745–753. [CrossRef] [PubMed] [Google Scholar]
  27. Efimov A, Kharitonov A, Efimova N, et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 2007 ; 12 : 917–930. [CrossRef] [PubMed] [Google Scholar]
  28. Miller PM, Folkmann AW, Maia ARR, et al. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 2009 ; 11 : 1069–1080. [CrossRef] [PubMed] [Google Scholar]
  29. Infante AS, Stein MS, Zhai Y, et al. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J Cell Sci 2000 ; 113 : 3907–3919. [PubMed] [Google Scholar]
  30. Marceiller J, Drechou A, Durand G, et al. Kinesin is involved in protecting nascent microtubules from disassembly after recovery from nocodazole treatment. Exp Cell Res 2005 ; 304 : 483–492. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.