Free Access
Issue |
Med Sci (Paris)
Volume 28, Number 1, Janvier 2012
|
|
---|---|---|
Page(s) | 96 - 102 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2012281023 | |
Published online | 27 January 2012 |
- Medzhitov R. Approaching the asymptote: 20 years later. Immunity 2009 ; 30 : 766–775. [CrossRef] [PubMed] [Google Scholar]
- Blasius AL, Beutler B. Intracellular Toll-like receptors. Immunity 2010 ; 32 : 305–315. [CrossRef] [PubMed] [Google Scholar]
- Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011 ; 34 : 637–650. [CrossRef] [PubMed] [Google Scholar]
- Delneste Y, Beauvillain C, Jeannin P. Immunité naturelle : structure et fonction des Toll-like receptors. Med Sci (Paris) 2007 ; 23 : 67–73. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Chatenoud L. Immunité innée et immunité adaptative : un flirt bénéfique ? Med Sci (Paris) 2002 ; 18 : 1183–1184. [CrossRef] [EDP Sciences] [Google Scholar]
- Leulier F, Lemaitre B. Toll-like receptors: taking an evolutionary approach. Nat Rev Genet 2008 ; 9 : 165–178. [CrossRef] [PubMed] [Google Scholar]
- Medzhitov R, Preston-Hurlburt P, Janeway CAJr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997 ; 388 : 394–397. [CrossRef] [PubMed] [Google Scholar]
- Yu L, Wang L, Chen S. Endogenous Toll-like receptor ligands and their biological significance. J Cell Mol Med 2010 ; 14 : 2592–2603. [CrossRef] [PubMed] [Google Scholar]
- Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001 ; 413 : 732–738. [CrossRef] [PubMed] [Google Scholar]
- Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 2007 ; 317 : 1522–1527. [CrossRef] [PubMed] [Google Scholar]
- Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004 ; 303 : 1526–1529. [CrossRef] [PubMed] [Google Scholar]
- Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol 2006 ; 7 : 131–137. [CrossRef] [PubMed] [Google Scholar]
- Mancuso G, Gambuzza M, Midiri A, et al. Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol 2009 ; 10 : 587–594. [CrossRef] [PubMed] [Google Scholar]
- Martinez J, Huang X, Yang Y. Toll-like receptor 8-mediated activation of murine plasmacytoid dendritic cells by vaccinia viral DNA. Proc Natl Acad Sci USA 2010 ; 107 : 6442–6447. [CrossRef] [Google Scholar]
- Bauer S, Bathke B, Lauterbach H, et al. A major role for TLR8 in the recognition of vaccinia viral DNA by murine pDC? Proc Natl Acad Sci USA 2010 ; 107 : E139. 40. [CrossRef] [Google Scholar]
- Krieg AM, Love-Homan L, Yi AK, Harty JT. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 1998 ; 161 : 2428–2434. [PubMed] [Google Scholar]
- Zimmermann S, Egeter O, Hausmann S, et al. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J Immunol 1998 ; 160 : 3627–3630. [PubMed] [Google Scholar]
- Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 2006 ; 7 : 49–56. [CrossRef] [PubMed] [Google Scholar]
- Tabeta K, Hoebe K, Janssen EM, et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 2006 ; 7 : 156–164. [CrossRef] [PubMed] [Google Scholar]
- Ewald SE, Engel A, Lee J, et al. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med 2011 ; 208 : 643–651. [CrossRef] [PubMed] [Google Scholar]
- Sepulveda FE, Maschalidi S, Colisson R, et al. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity 2009 ; 31 : 737–748. [CrossRef] [PubMed] [Google Scholar]
- Demaria O, Pagni PP, Traub S, et al. TLR8 deficiency leads to autoimmunity in mice. J Clin Invest 2010 ; 120 : 3651–3662. [PubMed] [Google Scholar]
- Richez C, Blanco P, Rifkin I, et al. Role for Toll-like receptors in autoimmune disease: the example of systemic lupus erythematosus. Joint Bone Spine 2011 ; 78 : 124–130. [CrossRef] [PubMed] [Google Scholar]
- Wang J, Shao Y, Bennett TA, et al. The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem 2006 ; 281 : 37427–37434. [CrossRef] [PubMed] [Google Scholar]
- Fukui R, Saitoh S, Matsumoto F, et al. Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. J Exp Med 2009 ; 206 : 1339–1350. [CrossRef] [PubMed] [Google Scholar]
- Crozat K, Vivier E, Dalod M. Crosstalk between components of the innate immune system: promoting anti-microbial defenses and avoiding immunopathologies. Immunol Rev 2009 ; 227 : 129–149. [CrossRef] [PubMed] [Google Scholar]
- Gorden KB, Gorski KS, Gibson SJ, et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol 2005 ; 174 : 1259–1268. [CrossRef] [PubMed] [Google Scholar]
- Schon MP, Schon M. TLR7 and TLR8 as targets in cancer therapy. Oncogene 2008 ; 27 : 190–199. [CrossRef] [PubMed] [Google Scholar]
- Stanley MA. Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 2002 ; 27 : 571–577. [CrossRef] [PubMed] [Google Scholar]
- Zagon IS, Donahue RN, Rogosnitzky M, McLaughlin PJ. Imiquimod upregulates the opioid growth factor receptor to inhibit cell proliferation independent of immune function. Exp Biol Med (Maywood) 2008 ; 233 : 968–979. [CrossRef] [PubMed] [Google Scholar]
- Krieg AM, Vollmer J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev 2007 ; 220 : 251–269. [CrossRef] [PubMed] [Google Scholar]
- Vollmer J, Tluk S, Schmitz C, et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 2005 ; 202 : 1575–1585. [CrossRef] [PubMed] [Google Scholar]
- Sacre SM, Lo A, Gregory B, et al. Inhibitors of TLR8 reduce TNF production from human rheumatoid synovial membrane cultures. J Immunol 2008 ; 181 : 8002–8009. [PubMed] [Google Scholar]
- Saruta M, Targan SR, Mei L, et al. High-frequency haplotypes in the X chromosome locus TLR8 are associated with both CD and UC in females. Inflamm Bowel Dis 2009 ; 15 : 321–327. [CrossRef] [PubMed] [Google Scholar]
- Zhang P, Cox CJ, Alvarez KM, Cunningham MW. Cutting edge: cardiac myosin activates innate immune responses through TLRs. J Immunol 2009 ; 183 : 27–31. [CrossRef] [PubMed] [Google Scholar]
- Gringhuis SI, van der Vlist M, van den Berg LM, et al. HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 2010 ; 11 : 419–426. [CrossRef] [PubMed] [Google Scholar]
- Hennessy EJ, Parker AE, O’Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 2010 ; 9 : 293–307. [CrossRef] [PubMed] [Google Scholar]
- Levy O, Suter EE, Miller RL, Wessels MR. Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood 2006 ; 108 : 1284–1290. [CrossRef] [PubMed] [Google Scholar]
- Imler JL, Ferrandon D. Le printemps de l’immunité innée couronné à Stockholm. Prix Nobel de médecine 2011. Med Sci (Paris) 2011 ; 27 : 1019–1024. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lanteri MC, Diamond MS, Norris PJ, Busch MP. Infection par le virus West Nile chez l’homme. II. Aspects physiopathologiques et réponses immunitaires. Med Sci (Paris) 2011 ; 27 : 382–386. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.