Free Access
Med Sci (Paris)
Volume 28, Number 1, Janvier 2012
Page(s) 103 - 108
Section M/S Revues
Published online 27 January 2012
  1. Hindorff LA, Junkins HA, Hall PN, et al. A Catalog of published genome-wide association studies. Available at: www.genomegov/gwastudies. [Google Scholar]
  2. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature 2009 ; 461 : 747–753. [CrossRef] [PubMed] [Google Scholar]
  3. Wellcome Trust Case Control Consortium. Genome-wide association study of 14, 000 cases of seven common diseases and 3,000 shared controls. Nature 2007 ; 447 : 661–678. [CrossRef] [PubMed] [Google Scholar]
  4. Maller J, George S, Purcell S, et al. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 2006 ; 38 : 1055–1059. [CrossRef] [PubMed] [Google Scholar]
  5. Figueroa JD, Garcia-Closas M, Humphreys M, et al. Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortium. Hum Mol Genet 2011 ; 20 : 4693–4706. [CrossRef] [PubMed] [Google Scholar]
  6. Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009 ; 41 : 77–81. [CrossRef] [PubMed] [Google Scholar]
  7. Hayes B, Goddard ME. The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol 2001 ; 33 : 209–229. [CrossRef] [PubMed] [Google Scholar]
  8. Valdar W, Solberg LC, Gauguier D, et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 2006 ; 38 : 879–887. [CrossRef] [PubMed] [Google Scholar]
  9. Montagutelli X, de Vienne D. Les populations expérimentales de cartographie génétique. Med Sci (Paris) 2008 ; 24 : 77–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 1997 ; 27 : 125–132. [CrossRef] [PubMed] [Google Scholar]
  11. Montagutelli X, Abitbol M. Utilisation des lignées congéniques chez la souris. Med Sci (Paris) 2004 ; 20 : 887–893. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. [Google Scholar]
  13. Flint J, Valdar W, Shifman S, Mott R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 2005 ; 6 : 271–286. [Google Scholar]
  14. Churchill GA, Airey DC, Allayee H, et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 2004 ; 36 : 1133–1137. [CrossRef] [PubMed] [Google Scholar]
  15. Threadgill DW, Hunter KW, Williams RW. Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mamm Genome 2002 ; 13 : 175–178. [CrossRef] [PubMed] [Google Scholar]
  16. Threadgill DW, Miller DR, Churchill GA, de Villena FP. The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J 2011 ; 52 : 24–31. [CrossRef] [PubMed] [Google Scholar]
  17. Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F. On the subspecific origin of the laboratory mouse. Nat Genet 2007 ; 39 : 1100–1107. [CrossRef] [PubMed] [Google Scholar]
  18. Chesler EJ, Miller DR, Branstetter LR, et al. The collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome 2008 ; 19 : 382–389. [CrossRef] [PubMed] [Google Scholar]
  19. Iraqi FA, Churchill G, Mott R. The Collaborative Cross, developing a resource for mammalian systems genetics: a status report of the Wellcome Trust cohort. Mamm Genome 2008 ; 19 : 379–381. [CrossRef] [PubMed] [Google Scholar]
  20. Morahan G, Balmer L, Monley D. Establishment of “The Gene Mine” a resource for rapid identification of complex trait genes. Mamm Genome 2008 ; 19 : 390–393. [CrossRef] [PubMed] [Google Scholar]
  21. Aylor DL, Valdar W, Foulds-Mathes W, et al. Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 2011 ; 21 : 1213–1222. [CrossRef] [PubMed] [Google Scholar]
  22. Keane TM, Goodstadt L, Danecek P, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 2011 ; 477 : 289–294. [CrossRef] [PubMed] [Google Scholar]
  23. Roberts A, Pardo-Manuel de Villena F, Wang W, et al. The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. Mamm Genome 2007 ; 18 : 473–481. [CrossRef] [PubMed] [Google Scholar]
  24. Valdar W, Flint J, Mott R. Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 2006 ; 172 : 1783–1797. [CrossRef] [PubMed] [Google Scholar]
  25. Bailey DW. Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 1971 ; 11 : 325–327. [CrossRef] [PubMed] [Google Scholar]
  26. Bystrykh L, Weersing E, Dontje B, et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using “genetical genomics”. Nat Genet 2005 ; 37 : 225–232. [CrossRef] [PubMed] [Google Scholar]
  27. [Google Scholar]
  28. Philip VM, Sokoloff G, Ackert-Bicknell CL, et al. Genetic analysis in the Collaborative Cross breeding population. Genome Res 2011 ; 21 : 1223–1238. [CrossRef] [PubMed] [Google Scholar]
  29. Durrant C, Tayem H, Yalcin B, et al. Collaborative Cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. Genome Res 2011 ; 21 : 1239–1248. [CrossRef] [PubMed] [Google Scholar]
  30. Kovacs A, Ben-Jacob N, Tayem H, et al. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol 2011 ; 61 : 423–428. [CrossRef] [PubMed] [Google Scholar]
  31. Mathes WF, Aylor DL, Miller DR, et al. Architecture of energy balance traits in emerging lines of the Collaborative Cross. Am J Physiol Endocrinol Metab 2011 ; 300 : E1124–E1134. [CrossRef] [PubMed] [Google Scholar]
  32. Zombeck JA, Deyoung EK, Brzezinska WJ, Rhodes JS. Selective breeding for increased home cage physical activity in collaborative cross and Hsd:ICR mice. Behav Genet 2011 ; 41 : 571–582. [CrossRef] [PubMed] [Google Scholar]
  33. [Google Scholar]
  34. Xiao J, Liang Y, Li K, et al. A novel strategy for genetic dissection of complex traits: the population of specific chromosome substitution strains from laboratory and wild mice. Mamm Genome 2010 ; 21 : 370–376. [CrossRef] [PubMed] [Google Scholar]
  35. Burgio G, Szatanik M, Guenet JL, et al. Interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species: a powerful tool to dissect genetic control of complex traits. Genetics 2007 ; 177 : 2321–2333. [CrossRef] [PubMed] [Google Scholar]
  36. Fairhurst AM, Wandstrat AE, Wakeland EK. Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol 2006 ; 92 : 1–69. [CrossRef] [PubMed] [Google Scholar]
  37. Leveziel N, Puche N, Zerbib J, et al. Génétique de la dégénérescence maculaire liée à l’âge. Med Sci (Paris) 2010 ; 26 : 509–515. [PubMed] [Google Scholar]
  38. Jordan B. Le déclin de l’empire des GWAS. Med Sci (Paris) 2009 ; 25 : 537–539. [PubMed] [Google Scholar]
  39. Lamoth F, Bochud PY. Arspergillose invasive : perspectives en infectiologie préventive. Med Sci (Paris) 2009 ; 25 : 669–672. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.