Free Access
Issue
Med Sci (Paris)
Volume 27, Number 4, Avril 2011
Page(s) 398 - 404
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2011274016
Published online 28 April 2011
  1. HartmannC, Corre-MenguyF, BoualemA, et al. Les microARN : une nouvelle classe de régulateurs de l’expression génique. Med Sci (Paris) 2004 ; 20 : 894-898. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. LimLP, LauNC, Garrett-EngeleP, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005 ; 433 : 769-773. [CrossRef] [PubMed] [Google Scholar]
  3. BaekD, VillenJ, ShinC, et al. The impact of microRNAs on protein output. Nature 2008 ; 455 : 64-71. [CrossRef] [PubMed] [Google Scholar]
  4. LandgrafP, RusuM, SheridanR, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007 ; 129 : 1401-1414. [CrossRef] [PubMed] [Google Scholar]
  5. LiangY, RidzonD, WongL, et al. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007 ; 8 : 166. [CrossRef] [PubMed] [Google Scholar]
  6. SunY, KooS, WhiteN, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004 ; 32 : e188. [CrossRef] [PubMed] [Google Scholar]
  7. PastorelliLM, WellsS, FrayM, et al. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome 2009 ; 20 : 140-151. [CrossRef] [PubMed] [Google Scholar]
  8. Sequeira-LopezML, WeatherfordET, BorgesGR, et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol 2010 ; 21 : 460-467. [CrossRef] [PubMed] [Google Scholar]
  9. Elvira-MatelotE, ZhouXO, FarmanN, et al. Regulation of WNK1 expression by miR-192 and aldosterone. J Am Soc Nephrol 2010 ; 21 : 1724-1731. [CrossRef] [PubMed] [Google Scholar]
  10. HarveySJ, JaradG, CunninghamJ, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol 2008 ; 19 : 2150-2158. [CrossRef] [PubMed] [Google Scholar]
  11. HoJ, NgKH, RosenS, et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 2008 ; 19 : 2069-2075. [CrossRef] [PubMed] [Google Scholar]
  12. ShiS, YuL, ChiuC, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 2008 ; 19 : 2159-2169. [CrossRef] [PubMed] [Google Scholar]
  13. HoJJ, MarsdenPA. Dicer cuts the kidney. J Am Soc Nephrol 2008 ; 19 : 2043-2046. [CrossRef] [PubMed] [Google Scholar]
  14. ShiS, YuL, SunY, et al. Exploration of the roles for miR-30 family in podocytopathies. J Am Soc Nephrol 2008 ; 19 : 2159-2169. [CrossRef] [PubMed] [Google Scholar]
  15. AnglicheauD, SharmaVK, DingR, et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci USA 2009 ; 106 : 5330-5335. [CrossRef] [Google Scholar]
  16. LiuY. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 2004 ; 15 : 1-12. [CrossRef] [PubMed] [Google Scholar]
  17. GregoryPA, BertAG, PatersonEL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008 ; 10 : 593-601. [CrossRef] [PubMed] [Google Scholar]
  18. KatoM, ZhangJ, WangM, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 2007 ; 104 : 3432-3437. [CrossRef] [Google Scholar]
  19. KrupaA, JenkinsR, LuoDD, et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 2010 ; 21 : 438-447. [CrossRef] [PubMed] [Google Scholar]
  20. WangB, Herman-EdelsteinM, KohP, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 2010 ; 59 : 1794-1802. [CrossRef] [PubMed] [Google Scholar]
  21. O’ConnellRM, RaoDS, ChaudhuriAA, et al. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010 ; 10 : 111-122. [CrossRef] [PubMed] [Google Scholar]
  22. XiaoC, RajewskyK. MicroRNA control in the immune system: basic principles. Cell 2009 ; 136 : 26-36. [CrossRef] [PubMed] [Google Scholar]
  23. TaganovKD, BoldinMP, ChangKJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006 ; 103 : 12481-12486. [CrossRef] [Google Scholar]
  24. ZhouB, WangS, MayrC, et al. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 2007 ; 104 : 7080-7085. [CrossRef] [Google Scholar]
  25. KoralovSB, MuljoSA, GallerGR, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008 ; 132 : 860-874. [CrossRef] [PubMed] [Google Scholar]
  26. CobbBS, HertweckA, SmithJ, et al. A role for dicer in immune regulation. J Exp Med 2006 ; 203 : 2519-2527. [CrossRef] [PubMed] [Google Scholar]
  27. JekerLT, BluestoneJA. Small RNA regulators of T cell-mediated autoimmunity. J Clin Immunol 2010 ; 30 : 347-357. [CrossRef] [PubMed] [Google Scholar]
  28. LuLF, BoldinMP, ChaudhryA, et al. Function of miR-146a in controlling treg cell-mediated regulation of Th1 responses. cell 2010 ; 142 : 914-929. [CrossRef] [PubMed] [Google Scholar]
  29. DaiY, HuangYS, TangM, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. lupus 2007 ; 16 : 939-946. [CrossRef] [PubMed] [Google Scholar]
  30. TangY, LuoX, CuiH, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009 ; 60 : 1065-1075. [CrossRef] [PubMed] [Google Scholar]
  31. TeJL, DozmorovIM, GuthridgeJM, et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS One 2010 ; 5 : e10344. [CrossRef] [PubMed] [Google Scholar]
  32. AnglicheauD, MuthukumarT, SuthanthiranM. MicroRNAs: small RNAs with big effects. Transplantation 2010 ; 90 : 105-112. [CrossRef] [PubMed] [Google Scholar]
  33. MitchellPS, ParkinRK, KrohEM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008 ; 105 : 10513-10518. [CrossRef] [Google Scholar]
  34. GiladS, MeiriE, YogevY, et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008 ; 3 : e3148. [CrossRef] [PubMed] [Google Scholar]
  35. RoodIM, DeegensJK, MerchantML, et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 2010 ; 78 : 810-816. [CrossRef] [PubMed] [Google Scholar]
  36. MirandaKC, BondDT, McKeeM, et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 2010 ; 78 : 191-199. [CrossRef] [PubMed] [Google Scholar]
  37. LuJ, GetzG, MiskaEA, et al. MicroRNA expression profiles classify human cancers. Nature 2005 ; 435 : 834-838. [CrossRef] [PubMed] [Google Scholar]
  38. EbertMS, NeilsonJR, SharpPA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007 ; 4 : 721-726. [CrossRef] [PubMed] [Google Scholar]
  39. LanfordRE, Hildebrandt-EriksenES, PetriA, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010 ; 327 : 198-201. [CrossRef] [PubMed] [Google Scholar]
  40. AgrawalS, TemsamaniJ, GalbraithW, et al. Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet 1995 ; 28 : 7-16. [CrossRef] [PubMed] [Google Scholar]
  41. LeeSO, MasyukT, SplinterP, et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest 2008 ; 118 : 3714-3724. [CrossRef] [PubMed] [Google Scholar]
  42. XiaoC, SrinivasanL, CaladoDP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat Immunol 2008 ; 9 : 405-414. [CrossRef] [PubMed] [Google Scholar]
  43. GodwinJG, GeX, StephanK, et al. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci USA 2010 ; 107 : 14339-14344. [CrossRef] [Google Scholar]
  44. LiuW, ZabirnykO, WangH, et al. miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene 2010 ; 29 : 4914-4924. [CrossRef] [PubMed] [Google Scholar]
  45. WangQ, WangY, MintoAW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. Faseb J 2008 ; 22 : 4126-4135. [CrossRef] [PubMed] [Google Scholar]
  46. KatoM, PuttaS, WangM, et al. TGF-beta activates akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 2009 ; 11 : 881-889. [CrossRef] [PubMed] [Google Scholar]
  47. ParkSM, GaurAB, LengyelE, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008 ; 22 : 894-907. [Google Scholar]
  48. KimVN, HanJ, SiomiMC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009 ; 10 : 126-139. [CrossRef] [PubMed] [Google Scholar]
  49. DunoyerP. La bataille du silence. Mécanisme et inhibition du RNA silencing au cours des interactions plante/virus. Med Sci (Paris) 2009 ; 25 : 505-511. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.