Accès gratuit
Numéro |
Med Sci (Paris)
Volume 27, Numéro 4, Avril 2011
|
|
---|---|---|
Page(s) | 398 - 404 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2011274016 | |
Publié en ligne | 28 avril 2011 |
- HartmannC, Corre-MenguyF, BoualemA, et al. Les microARN : une nouvelle classe de régulateurs de l’expression génique. Med Sci (Paris) 2004 ; 20 : 894-898. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- LimLP, LauNC, Garrett-EngeleP, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005 ; 433 : 769-773. [CrossRef] [PubMed] [Google Scholar]
- BaekD, VillenJ, ShinC, et al. The impact of microRNAs on protein output. Nature 2008 ; 455 : 64-71. [CrossRef] [PubMed] [Google Scholar]
- LandgrafP, RusuM, SheridanR, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007 ; 129 : 1401-1414. [CrossRef] [PubMed] [Google Scholar]
- LiangY, RidzonD, WongL, et al. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007 ; 8 : 166. [CrossRef] [PubMed] [Google Scholar]
- SunY, KooS, WhiteN, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004 ; 32 : e188. [CrossRef] [PubMed] [Google Scholar]
- PastorelliLM, WellsS, FrayM, et al. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome 2009 ; 20 : 140-151. [CrossRef] [PubMed] [Google Scholar]
- Sequeira-LopezML, WeatherfordET, BorgesGR, et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol 2010 ; 21 : 460-467. [CrossRef] [PubMed] [Google Scholar]
- Elvira-MatelotE, ZhouXO, FarmanN, et al. Regulation of WNK1 expression by miR-192 and aldosterone. J Am Soc Nephrol 2010 ; 21 : 1724-1731. [CrossRef] [PubMed] [Google Scholar]
- HarveySJ, JaradG, CunninghamJ, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol 2008 ; 19 : 2150-2158. [CrossRef] [PubMed] [Google Scholar]
- HoJ, NgKH, RosenS, et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 2008 ; 19 : 2069-2075. [CrossRef] [PubMed] [Google Scholar]
- ShiS, YuL, ChiuC, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 2008 ; 19 : 2159-2169. [CrossRef] [PubMed] [Google Scholar]
- HoJJ, MarsdenPA. Dicer cuts the kidney. J Am Soc Nephrol 2008 ; 19 : 2043-2046. [CrossRef] [PubMed] [Google Scholar]
- ShiS, YuL, SunY, et al. Exploration of the roles for miR-30 family in podocytopathies. J Am Soc Nephrol 2008 ; 19 : 2159-2169. [CrossRef] [PubMed] [Google Scholar]
- AnglicheauD, SharmaVK, DingR, et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci USA 2009 ; 106 : 5330-5335. [CrossRef] [Google Scholar]
- LiuY. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 2004 ; 15 : 1-12. [CrossRef] [PubMed] [Google Scholar]
- GregoryPA, BertAG, PatersonEL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008 ; 10 : 593-601. [CrossRef] [PubMed] [Google Scholar]
- KatoM, ZhangJ, WangM, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 2007 ; 104 : 3432-3437. [CrossRef] [Google Scholar]
- KrupaA, JenkinsR, LuoDD, et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 2010 ; 21 : 438-447. [CrossRef] [PubMed] [Google Scholar]
- WangB, Herman-EdelsteinM, KohP, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 2010 ; 59 : 1794-1802. [CrossRef] [PubMed] [Google Scholar]
- O’ConnellRM, RaoDS, ChaudhuriAA, et al. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010 ; 10 : 111-122. [CrossRef] [PubMed] [Google Scholar]
- XiaoC, RajewskyK. MicroRNA control in the immune system: basic principles. Cell 2009 ; 136 : 26-36. [CrossRef] [PubMed] [Google Scholar]
- TaganovKD, BoldinMP, ChangKJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006 ; 103 : 12481-12486. [CrossRef] [Google Scholar]
- ZhouB, WangS, MayrC, et al. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 2007 ; 104 : 7080-7085. [CrossRef] [Google Scholar]
- KoralovSB, MuljoSA, GallerGR, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008 ; 132 : 860-874. [CrossRef] [PubMed] [Google Scholar]
- CobbBS, HertweckA, SmithJ, et al. A role for dicer in immune regulation. J Exp Med 2006 ; 203 : 2519-2527. [CrossRef] [PubMed] [Google Scholar]
- JekerLT, BluestoneJA. Small RNA regulators of T cell-mediated autoimmunity. J Clin Immunol 2010 ; 30 : 347-357. [CrossRef] [PubMed] [Google Scholar]
- LuLF, BoldinMP, ChaudhryA, et al. Function of miR-146a in controlling treg cell-mediated regulation of Th1 responses. cell 2010 ; 142 : 914-929. [CrossRef] [PubMed] [Google Scholar]
- DaiY, HuangYS, TangM, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. lupus 2007 ; 16 : 939-946. [CrossRef] [PubMed] [Google Scholar]
- TangY, LuoX, CuiH, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009 ; 60 : 1065-1075. [CrossRef] [PubMed] [Google Scholar]
- TeJL, DozmorovIM, GuthridgeJM, et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS One 2010 ; 5 : e10344. [CrossRef] [PubMed] [Google Scholar]
- AnglicheauD, MuthukumarT, SuthanthiranM. MicroRNAs: small RNAs with big effects. Transplantation 2010 ; 90 : 105-112. [CrossRef] [PubMed] [Google Scholar]
- MitchellPS, ParkinRK, KrohEM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008 ; 105 : 10513-10518. [CrossRef] [Google Scholar]
- GiladS, MeiriE, YogevY, et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008 ; 3 : e3148. [CrossRef] [PubMed] [Google Scholar]
- RoodIM, DeegensJK, MerchantML, et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 2010 ; 78 : 810-816. [CrossRef] [PubMed] [Google Scholar]
- MirandaKC, BondDT, McKeeM, et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 2010 ; 78 : 191-199. [CrossRef] [PubMed] [Google Scholar]
- LuJ, GetzG, MiskaEA, et al. MicroRNA expression profiles classify human cancers. Nature 2005 ; 435 : 834-838. [CrossRef] [PubMed] [Google Scholar]
- EbertMS, NeilsonJR, SharpPA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007 ; 4 : 721-726. [CrossRef] [PubMed] [Google Scholar]
- LanfordRE, Hildebrandt-EriksenES, PetriA, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010 ; 327 : 198-201. [CrossRef] [PubMed] [Google Scholar]
- AgrawalS, TemsamaniJ, GalbraithW, et al. Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet 1995 ; 28 : 7-16. [CrossRef] [PubMed] [Google Scholar]
- LeeSO, MasyukT, SplinterP, et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest 2008 ; 118 : 3714-3724. [CrossRef] [PubMed] [Google Scholar]
- XiaoC, SrinivasanL, CaladoDP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat Immunol 2008 ; 9 : 405-414. [CrossRef] [PubMed] [Google Scholar]
- GodwinJG, GeX, StephanK, et al. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci USA 2010 ; 107 : 14339-14344. [CrossRef] [Google Scholar]
- LiuW, ZabirnykO, WangH, et al. miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene 2010 ; 29 : 4914-4924. [CrossRef] [PubMed] [Google Scholar]
- WangQ, WangY, MintoAW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. Faseb J 2008 ; 22 : 4126-4135. [CrossRef] [PubMed] [Google Scholar]
- KatoM, PuttaS, WangM, et al. TGF-beta activates akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 2009 ; 11 : 881-889. [CrossRef] [PubMed] [Google Scholar]
- ParkSM, GaurAB, LengyelE, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008 ; 22 : 894-907. [Google Scholar]
- KimVN, HanJ, SiomiMC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009 ; 10 : 126-139. [CrossRef] [PubMed] [Google Scholar]
- DunoyerP. La bataille du silence. Mécanisme et inhibition du RNA silencing au cours des interactions plante/virus. Med Sci (Paris) 2009 ; 25 : 505-511. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.