Accès gratuit
Med Sci (Paris)
Volume 27, Numéro 4, Avril 2011
Page(s) 391 - 397
Section M/S Revues
Publié en ligne 28 avril 2011
  1. MackayCR. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nat Immunol 2008 ; 9 : 988-998. [CrossRef] [PubMed] [Google Scholar]
  2. DesjardinsSF, BerchicheYA, HaddadE, HevekerN.. CXCR4, un récepteur de chimiokine aux multiples talents. Med Sci (Paris) 2007 ; 23 : 980-984. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. BusilloJM, BenovicJL. Regulation of CXCR4 signaling. Biochim Biophys Acta 2007 ; 1768 : 952-963. [CrossRef] [PubMed] [Google Scholar]
  4. BalabanianK, LaganeB, InfantinoS, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005 ; 280 : 35760-35766. [CrossRef] [PubMed] [Google Scholar]
  5. Scott-AlgaraD, BalabanianK, ChakrabartiLA, et al. Idiopathic CD4+ T-cell lymphocytopenia is associated with impaired membrane expression of the chemokine receptor CXCR4. Blood 2010 ; 115 : 3708-3717. [CrossRef] [PubMed] [Google Scholar]
  6. BalabanianK, LaganeB, PablosJL, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005 ; 105 : 2449-2457. [CrossRef] [PubMed] [Google Scholar]
  7. LuoL, LiT. Idiopathic CD4 lymphocytopenia and opportunistic infection-an update. FEMS Immunol Med Microbiol 2008 ; 54 : 283-289. [CrossRef] [PubMed] [Google Scholar]
  8. ZoniosDI, FalloonJ, BennettJE, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood 2008 ; 112 : 287-294. [CrossRef] [PubMed] [Google Scholar]
  9. MalaspinaA, MoirS, ChaittDG, et al. Idiopathic CD4+ T lymphocytopenia is associated with increases in immature/transitional B cells and serum levels of IL-7. Blood 2007 ; 109 : 2086-2088. [CrossRef] [PubMed] [Google Scholar]
  10. WalkerUA, WarnatzK. Idiopathic CD4 lymphocytopenia. Curr Opin Rheumatol 2006 ; 18 : 389-395. [CrossRef] [PubMed] [Google Scholar]
  11. IsgroA, SirianniMC, GramiccioniC, et al. Idiopathic CD4+ lymphocytopenia may be due to decreased bone marrow clonogenic capability. Int Arch Allergy Immunol 2005 ; 136 : 379-384. [CrossRef] [PubMed] [Google Scholar]
  12. Cavazzana-CalvoM, SixE, Andre-SchmutzI, CoulombelL. Hématopoïèse humaine : des cellules CD34 aux lymphocytes T. Med Sci (Paris) 2007 ; 23 : 151-159. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. BromleySK, MempelTR, LusterADOrchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 2008 ; 9 : 970-980. [CrossRef] [PubMed] [Google Scholar]
  14. OnaiN, ZhangY, YoneyamaH, et al. Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 2000 ; 96 : 2074-2080. [PubMed] [Google Scholar]
  15. SawadaS, GowrishankarK, KitamuraR, et al. Disturbed CD4+ T cell homeostasis and in vitro HIV-1 susceptibility in transgenic mice expressing T cell line-tropic HIV-1 receptors. J Exp Med 1998 ; 187 : 1439-1449. [CrossRef] [PubMed] [Google Scholar]
  16. GorlinRJ, GelbB, DiazGA, et al. WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet 2000 ; 91 : 368-376. [CrossRef] [PubMed] [Google Scholar]
  17. KawaiT, MalechHL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol 2009 ; 16 : 20-26. [CrossRef] [PubMed] [Google Scholar]
  18. TassoneL, MorattoD, VermiW, et al. Defect of plasmacytoid dendritic cells in warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome patients. Blood 2010 ; 116 : 4870-4873. [CrossRef] [PubMed] [Google Scholar]
  19. Mc GuirePJ, Cunningham-RundlesC, OchsH, DiazGA.. Oligoclonality, impaired class switch and B-cell memory responses in WHIM syndrome. Clin Immunol 2010 ; 135 : 412-421. [CrossRef] [PubMed] [Google Scholar]
  20. HernandezPA, GorlinRJ, LukensJN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 2003 ; 34 : 70-74. [CrossRef] [PubMed] [Google Scholar]
  21. LaganeB, ChowKY, BalabanianK, et al. CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 2008 ; 112 : 34-44. [CrossRef] [PubMed] [Google Scholar]
  22. BalabanianK, LevoyeA, KlemmL, et al. Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. J Clin Invest 2008 ; 118 : 1074-1084. [PubMed] [Google Scholar]
  23. McCormickPJ, SegarraM, GasperiniP, et al. Impaired recruitment of Grk6 and beta-Arrestin 2 causes delayed internalization and desensitization of a WHIM syndrome-associated CXCR4 mutant receptor. PLoS One 2009 ; 4 : e8102. [Google Scholar]
  24. BusilloJM, ArmandoS, SenguptaR, et al. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem 2010 ; 285 : 7805-7817. [CrossRef] [PubMed] [Google Scholar]
  25. PusicI, DiPersioJF. Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr Opin Hematol 2010 ; 17 : 319-326. [CrossRef] [PubMed] [Google Scholar]
  26. DonckerAV, BalabanianK, Bellanne-ChantelotC, et al. Two cases of disseminated Mycobacterium avium infection associated with a new immunodeficiency syndrome related to CXCR4 dysfunctions. Clin Microbiol Infect 2011 ; 17 : 135-139. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.