Free Access
Issue
Med Sci (Paris)
Volume 27, Number 4, Avril 2011
Page(s) 405 - 412
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2011274017
Published online 28 April 2011
  1. Commoner B, Townsend J, Pake GE. Free radicals in biological materials. Nature 1954 ; 174 : 689-691. [CrossRef] [PubMed] [Google Scholar]
  2. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956 ; 11 : 298-300. [PubMed] [Google Scholar]
  3. Guichard C, Pedruzzi E, Fay M, et al. Les Nox/Duox : une nouvelle famille de NADPH oxydases. Med Sci (Paris) 2006 ; 22 : 953-959. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 2008 ; 275 : 3249-3277. [CrossRef] [PubMed] [Google Scholar]
  5. Nauseef WM. Biological roles for the NOX family NADPH oxidases. J Biol Chem 2008 ; 283 : 16961-16965. [CrossRef] [PubMed] [Google Scholar]
  6. Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med 2009 ; 47 : 1239-1253. [CrossRef] [PubMed] [Google Scholar]
  7. Delattre J, Beaudeux JL, Bonnefont-Rousselot D. Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Cachan : Lavoisier, 2005. [Google Scholar]
  8. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine, 2e ed.. Oxford, UK : Clarendon, 1989. [Google Scholar]
  9. Carrière A, Galinier A, Fernandez Y, et al. Les espèces actives de l’oxygène : le yin et le yang de la mitochondrie. Med Sci (Paris) 2006 ; 22 : 47-53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Davies KJ. Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 1987 ; 262 : 9895-9901. [PubMed] [Google Scholar]
  11. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997 ; 33 : 20313-20316. [CrossRef] [PubMed] [Google Scholar]
  12. Finkel T. Redox-dependent signal transduction. FEBS Lett 2000 ; 476 : 52-54. [CrossRef] [PubMed] [Google Scholar]
  13. Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 2002 ; 32 : 790-796. [CrossRef] [PubMed] [Google Scholar]
  14. Murphy RC. Free radical-induced oxidation of glycerophosphocholine lipids and formation of biologically active products. Adv Exp Med Biol 1996 ; 416 : 51-58. [PubMed] [Google Scholar]
  15. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002 ; 82 : 47-95. [PubMed] [Google Scholar]
  16. Sundaresan M, Yu ZX, Ferrans VJ, et al. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995 ; 270 : 296-299. [CrossRef] [PubMed] [Google Scholar]
  17. Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R. Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NFκ-B and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 1997 ; 96 : 2361-2367. [PubMed] [Google Scholar]
  18. Jay DB, Papaharalambus CA, Seidel-Rogol B, et al. Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells. Free Radic Biol Med 2008 ; 45 : 329-335. [CrossRef] [PubMed] [Google Scholar]
  19. Bae YS, Kang SW, Seo MS, et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. J Biol Chem 1997 ; 272 : 217-221. [CrossRef] [PubMed] [Google Scholar]
  20. Sundaresan M, Yu ZX, Ferrans VJ, et al. Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem J 1996 ; 318 : 379-382. [PubMed] [Google Scholar]
  21. Stasia MJ. La granulomatose septique chronique X+. Un fabuleux modèle d’étude de l’activation du complexe NADPH oxydase. Med Sci (Paris) 2007 ; 23 : 526-532. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Varthaman A, Khallou-Laschet J, Thaunat O, et al. L’athérogenèse : une maladie dysimmunitaire. Med Sci (Paris) 2008 ; 24 : 169-176. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Morozova S, Suc-Royer I, Auwerx J. Modulateurs du métabolisme du cholestérol et avenir du traitement de l’athérosclérose. Med Sci (Paris) 2004 ; 20 : 685-690. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Poli G, Sottero B, Gargiulo S, Leonarduzzi G. Cholesterol oxidation products in the vascular remodeling due to atherosclerosis. Mol Aspects Med 2009 ; 30 : 180-189. [CrossRef] [PubMed] [Google Scholar]
  25. Von Hoff DD, Rozencweig M, Layard M, et al. Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am J Med 1977 ; 62 : 200-208. [CrossRef] [PubMed] [Google Scholar]
  26. Simnek T, Stérba M, Popelová O, et al. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 2009 ; 61 : 154-171. [PubMed] [Google Scholar]
  27. Myers C. The role of iron in doxorubicin-induced cardiomyopathy. Semin Oncol 1998 ; 25 : 10-14. [PubMed] [Google Scholar]
  28. Shioji K, Kishimoto C, Nakamura H, et al. Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 2002 ; 106 : 1403-1409. [CrossRef] [PubMed] [Google Scholar]
  29. Sun X, Zhou Z, Kang YJ. Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res 2001 ; 61 : 3382-3387. [PubMed] [Google Scholar]
  30. Ludke AR, Al-Shudiefat AA, Dhingra S, et al. A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Can J Physiol Pharmacol 2009 ; 87 : 756-763. [CrossRef] [PubMed] [Google Scholar]
  31. Mazat JP, Ransac S. Le complexe bc1 de la chaîne respiratoire mitochondriale fonctionne selon l’hypothèse du cycle Q de Mitchell. La preuve par une approche stochastique ? Med Sci (Paris) 2010 ; 26 : 1079-1086. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.