Free Access
Med Sci (Paris)
Volume 27, Number 4, Avril 2011
Page(s) 391 - 397
Section M/S Revues
Published online 28 April 2011
  1. MackayCR. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nat Immunol 2008 ; 9 : 988-998. [CrossRef] [PubMed] [Google Scholar]
  2. DesjardinsSF, BerchicheYA, HaddadE, HevekerN.. CXCR4, un récepteur de chimiokine aux multiples talents. Med Sci (Paris) 2007 ; 23 : 980-984. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. BusilloJM, BenovicJL. Regulation of CXCR4 signaling. Biochim Biophys Acta 2007 ; 1768 : 952-963. [CrossRef] [PubMed] [Google Scholar]
  4. BalabanianK, LaganeB, InfantinoS, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005 ; 280 : 35760-35766. [CrossRef] [PubMed] [Google Scholar]
  5. Scott-AlgaraD, BalabanianK, ChakrabartiLA, et al. Idiopathic CD4+ T-cell lymphocytopenia is associated with impaired membrane expression of the chemokine receptor CXCR4. Blood 2010 ; 115 : 3708-3717. [CrossRef] [PubMed] [Google Scholar]
  6. BalabanianK, LaganeB, PablosJL, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005 ; 105 : 2449-2457. [CrossRef] [PubMed] [Google Scholar]
  7. LuoL, LiT. Idiopathic CD4 lymphocytopenia and opportunistic infection-an update. FEMS Immunol Med Microbiol 2008 ; 54 : 283-289. [CrossRef] [PubMed] [Google Scholar]
  8. ZoniosDI, FalloonJ, BennettJE, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood 2008 ; 112 : 287-294. [CrossRef] [PubMed] [Google Scholar]
  9. MalaspinaA, MoirS, ChaittDG, et al. Idiopathic CD4+ T lymphocytopenia is associated with increases in immature/transitional B cells and serum levels of IL-7. Blood 2007 ; 109 : 2086-2088. [CrossRef] [PubMed] [Google Scholar]
  10. WalkerUA, WarnatzK. Idiopathic CD4 lymphocytopenia. Curr Opin Rheumatol 2006 ; 18 : 389-395. [CrossRef] [PubMed] [Google Scholar]
  11. IsgroA, SirianniMC, GramiccioniC, et al. Idiopathic CD4+ lymphocytopenia may be due to decreased bone marrow clonogenic capability. Int Arch Allergy Immunol 2005 ; 136 : 379-384. [CrossRef] [PubMed] [Google Scholar]
  12. Cavazzana-CalvoM, SixE, Andre-SchmutzI, CoulombelL. Hématopoïèse humaine : des cellules CD34 aux lymphocytes T. Med Sci (Paris) 2007 ; 23 : 151-159. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. BromleySK, MempelTR, LusterADOrchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 2008 ; 9 : 970-980. [CrossRef] [PubMed] [Google Scholar]
  14. OnaiN, ZhangY, YoneyamaH, et al. Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 2000 ; 96 : 2074-2080. [PubMed] [Google Scholar]
  15. SawadaS, GowrishankarK, KitamuraR, et al. Disturbed CD4+ T cell homeostasis and in vitro HIV-1 susceptibility in transgenic mice expressing T cell line-tropic HIV-1 receptors. J Exp Med 1998 ; 187 : 1439-1449. [CrossRef] [PubMed] [Google Scholar]
  16. GorlinRJ, GelbB, DiazGA, et al. WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet 2000 ; 91 : 368-376. [CrossRef] [PubMed] [Google Scholar]
  17. KawaiT, MalechHL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol 2009 ; 16 : 20-26. [CrossRef] [PubMed] [Google Scholar]
  18. TassoneL, MorattoD, VermiW, et al. Defect of plasmacytoid dendritic cells in warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome patients. Blood 2010 ; 116 : 4870-4873. [CrossRef] [PubMed] [Google Scholar]
  19. Mc GuirePJ, Cunningham-RundlesC, OchsH, DiazGA.. Oligoclonality, impaired class switch and B-cell memory responses in WHIM syndrome. Clin Immunol 2010 ; 135 : 412-421. [CrossRef] [PubMed] [Google Scholar]
  20. HernandezPA, GorlinRJ, LukensJN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 2003 ; 34 : 70-74. [CrossRef] [PubMed] [Google Scholar]
  21. LaganeB, ChowKY, BalabanianK, et al. CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 2008 ; 112 : 34-44. [CrossRef] [PubMed] [Google Scholar]
  22. BalabanianK, LevoyeA, KlemmL, et al. Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. J Clin Invest 2008 ; 118 : 1074-1084. [PubMed] [Google Scholar]
  23. McCormickPJ, SegarraM, GasperiniP, et al. Impaired recruitment of Grk6 and beta-Arrestin 2 causes delayed internalization and desensitization of a WHIM syndrome-associated CXCR4 mutant receptor. PLoS One 2009 ; 4 : e8102. [Google Scholar]
  24. BusilloJM, ArmandoS, SenguptaR, et al. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem 2010 ; 285 : 7805-7817. [CrossRef] [PubMed] [Google Scholar]
  25. PusicI, DiPersioJF. Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr Opin Hematol 2010 ; 17 : 319-326. [CrossRef] [PubMed] [Google Scholar]
  26. DonckerAV, BalabanianK, Bellanne-ChantelotC, et al. Two cases of disseminated Mycobacterium avium infection associated with a new immunodeficiency syndrome related to CXCR4 dysfunctions. Clin Microbiol Infect 2011 ; 17 : 135-139. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.