Free Access
Med Sci (Paris)
Volume 25, Number 8-9, Août-Septembre 2009
Page(s) 699 - 704
Section M/S revues
Published online 15 August 2009
  1. Witko-Sarsat V, Rieu P, Descamps-Latscha B, et al. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 2000; 80 : 617–53. [Google Scholar]
  2. Segal AW. How neutrophils kill microbes. Annu Rev Immunol 2005; 23 : 197–223. [Google Scholar]
  3. Gougerot-Pocidalo MA, El Benna J, My-Chan Dang P, et al. Quand les polynucléaires neutrophiles attrapent les agents pathogènes dans leurs filets. Med Sci (Paris) 2007;23 : 464–5. [Google Scholar]
  4. Chakravarti A, Allaeys I, Poubelle PE. Neutrophile et immunité : est-ce inné ou acquis ? Med Sci (Paris) 2007; 23 : 862–7. [Google Scholar]
  5. Cassatella MA. The production of cytokines by polymorphonuclear neutrophils. Immunol Today 1995; 16 : 21–6. [Google Scholar]
  6. Cassatella MA. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 1999; 73 : 369–509. [Google Scholar]
  7. Dinarello CA. Proinflammatory cytokines. Chest 2000; 118 : 503–8. [Google Scholar]
  8. O’Dell JR. Anticytokine therapy: a new era in the treatment of rheumatoid arthritis ? N Engl J Med 1999; 340 : 310–2. [Google Scholar]
  9. Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol 1994; 55 : 97–179. [Google Scholar]
  10. St-Onge M, Flamand N, Biarc J, et al. Characterization of prostaglandin E2 generation through the cyclooxygenase (COX)-2 pathway in human neutrophils. Biochim Biophys Acta 2007;1771 : 1235–45. [Google Scholar]
  11. Hicks A, Monkarsh SP, Hoffman AF, et al. Leukotriene B4 receptor antagonists as therapeutics for inflammatory disease: preclinical and clinical developments. Expert Opin Investig Drugs 2007; 16 : 1909–20. [Google Scholar]
  12. Ham EA, Soderman DD, Zanetti ME, et al. Inhibition by prostaglandins of leukotriene B4 release from activated neutrophils. Proc Natl Acad Sci USA 1983; 80 : 4349–53. [Google Scholar]
  13. Oh-ishi S, Utsunomiya I, Yamamoto T, et al. Effects of prostaglandins and cyclic AMP on cytokine production in rat leukocytes. Eur J Pharmacol 1996; 300 : 255–9. [Google Scholar]
  14. Lawrence T, Gilroy DW. Chronic inflammation: a failure of resolution ? Int J Exp Pathol 2007; 88 : 85–94. [Google Scholar]
  15. Hurst SM, McLoughlin RM, Monslow J, et al. Secretion of oncostatin M by infiltrating neutrophils: regulation of IL-6 and chemokine expression in human mesothelial cells.J Immunol 2002; 169 : 5244–51. [Google Scholar]
  16. Hurst SM, Wilkinson TS, McLoughlin RM, et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14 : 705–14. [Google Scholar]
  17. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002;109 : 41–50. [Google Scholar]
  18. Bours MJ, Swennen EL, Di Virgilio F, et al. Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006;112 : 358–404. [Google Scholar]
  19. Hasko G, Linden J, Cronstein B, et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008; 7 : 759–70. [Google Scholar]
  20. Fortin A, Harbour D, Fernandes M, et al. Differential expression of adenosine receptors in human neutrophils: up-regulation by specific Th1 cytokines and lipopolysaccharide.J Leukoc Biol 2006; 79 : 574–85. [Google Scholar]
  21. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001; 414 : 916–20. [Google Scholar]
  22. Cronstein BN, Naime D, Ostad E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest 1993; 92 : 2675–82. [Google Scholar]
  23. Cronstein BN, Rosenstein ED, Kramer SB, et al. Adenosine: a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol 1985; 135 : 1366–71. [Google Scholar]
  24. Flamand N, Boudreault S, Picard S, et al. Adenosine, a potent natural suppressor of arachidonic acid release and leukotriene biosynthesis in human neutrophils. Am J Respir Crit Care Med 2000; 161 : S88–94. [Google Scholar]
  25. Cadieux JS, Leclerc P, St-Onge M, et al. Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal. J Cell Sci 2005; 118 : 1437–47. [Google Scholar]
  26. Pouliot M, Fiset ME, Masse M, et al. Adenosine up-regulates cyclooxygenase-2 in human granulocytes: impact on the balance of eicosanoid generation. J Immunol 2002; 169 : 5279–86. [Google Scholar]
  27. Surette ME, Krump E, Picard S, et al. Activation of leukotriene synthesis in human neutrophils by exogenous arachidonic acid: inhibition by adenosine A(2a) receptor agonists and crucial role of autocrine activation by leukotriene B(4). Mol Pharmacol 1999; 56 : 1055–62. [Google Scholar]
  28. McColl SR, St-Onge M, Dussault AA, et al. Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils. Faseb J 2006; 20 : 187–9. [Google Scholar]
  29. Ernens I, Rouy D, Velot E, et al. Adenosine inhibits matrix metalloproteinase-9 secretion by neutrophils: implication of A2a receptor and cAMP/PKA/Ca2+ pathway. Circ Res 2006; 99 : 590–7. [Google Scholar]
  30. Wahl AF, Wallace PM. Oncostatin M in the anti-inflammatory response. Ann Rheum Dis 2001; 60 (suppl 3) : 75–80. [Google Scholar]
  31. Revan S, Montesinos MC, Naime D, et al. Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine/threonine protein phosphatase. J Biol Chem 1996; 271 : 17114–8. [Google Scholar]
  32. Flamand N, Surette ME, Picard S, et al. Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils. Mol Pharmacol 2002; 62 : 250–6. [Google Scholar]
  33. Thibault N, Burelout C, Harbour D, et al. Occupancy of adenosine A2a receptors promotes fMLP-induced cyclic AMP accumulation in human neutrophils: impact on phospholipase D activity and recruitment of small GTPases to membranes. J Leukoc Biol 2002; 71 : 367–77. [Google Scholar]
  34. Lukashev D, Ohta A, Apasov S, et al. Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol 2004; 173 : 21–4. [Google Scholar]
  35. Schulte G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 2003; 15 : 813–27. [Google Scholar]
  36. Pouliot M, Gilbert C, Borgeat P, et al. Expression and activity of prostaglandin endoperoxide synthase-2 in agonist-activated human neutrophils. Faseb J 1998; 12 : 1109–23. [Google Scholar]
  37. Pierce A, Legrand D, Mazurier J. La lactoferrine : une protéine multifonctionnelle. Med Sci (Paris) 2009; 25 : 361–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.