Free Access
Issue
Med Sci (Paris)
Volume 24, Number 11, Novembre 2008
Page(s) 961 - 966
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082411961
Published online 15 November 2008
  1. Myers BD, Ross J, Newton L, et al. Cyclosporine-associated chronic nephropathy. N Engl J Med 1984; 311 : 699–705. [Google Scholar]
  2. Lindholm A, Kahan BD. Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther 1993; 54 : 205–18. [Google Scholar]
  3. Kasiske BL, Heim-Duthoy K, Rao KV, Awni WM. The relationship between cyclosporine pharmacokinetic parameters and subsequent acute rejection in renal transplant recipients. Transplantation 1988; 46 : 716–22. [Google Scholar]
  4. Keown P, Landsberg D, Halloran P, et al. A randomized, prospective multicenter pharmacoepidemiologic study of cyclosporine microemulsion in stable renal graft recipients. Report of the Canadian neoral renal transplantation study group. Transplantation 1996; 62 : 1744–52. [Google Scholar]
  5. Barone G, Chang CT, Choc MG Jr, et al. The pharmacokinetics of a microemulsion formulation of cyclosporine in primary renal allograft recipients. The neoral study Group. Transplantation 1996; 61 : 875–80. [Google Scholar]
  6. Mahalati K, Belitsky P, Sketris I, et al. Neoral monitoring by simplified sparse sampling area under the concentration-time curve: its relationship to acute rejection and cyclosporine nephrotoxicity early after kidney transplantation. Transplantation 1999; 68 : 55–62. [Google Scholar]
  7. International neoral renal transplantation study group. Cyclosporine microemulsion (Neoral) absorption profiling and sparse-sample predictors during the first 3 months after renal transplantation. Am J Transplant 2002; 2 : 148–56. [Google Scholar]
  8. Cantarovich M, Barkun JS, Tchervenkov JI, et al. Comparison of neoral dose monitoring with cyclosporine through levels versus 2-hr postdose levels in stable liver transplant patients. Transplantation 1998; 66 : 1621–7. [Google Scholar]
  9. Cantarovich M, Besner JG, Barkun JS, et al. Two-hour cyclosporine level determination is the appropriate tool to monitor Neoral therapy. Clin Transplant 1998; 12 : 243–9. [Google Scholar]
  10. Jaksch P, Kocher A, Neuhauser P, et al. Monitoring C2 level predicts exposure in maintenance lung transplant patients receiving the microemulsion formulation of cyclosporine (Neoral). J Heart Lung Transplant 2005; 24 : 1076–80. [Google Scholar]
  11. Levy G, Thervet E, Lake J, Uchida K. Patient management by Neoral C(2) monitoring: an international consensus statement. Transplantation 2002; 73 (suppl 9) : S12. [Google Scholar]
  12. Nashan B, Bock A, Bosmans JL, et al. Use of Neoral C monitoring: a European consensus. Transpl Int 2005; 18 : 768–78. [Google Scholar]
  13. Knight SR, Morris PJ. The clinical benefits of cyclosporine C2-level monitoring: a systematic review. Transplantation 2007; 83 : 1525–35. [Google Scholar]
  14. Glanville AR, Aboyoun CL, Morton JM, et al. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation. J Heart Lung Transplant 2006; 25 : 928–34. [Google Scholar]
  15. Shaw LM, Figurski M, Milone MC, et al. Therapeutic drug monitoring of mycophenolic acid. Clin J Am Soc Nephrol 2007; 2 : 1062–72. [Google Scholar]
  16. Gabardi S, Tran JL, Clarkson MR. Enteric-coated mycophenolate sodium. Ann Pharmacother 2003; 37 : 1685–93. [Google Scholar]
  17. Budde K, Glander P, Diekmann F, et al. Review of the immunosuppressant enteric-coated mycophenolate sodium. Expert Opin Pharmacother 2004; 5 : 1333–45. [Google Scholar]
  18. Tedesco-Silva H, Bastien MC, Choi L, et al. Mycophenolic acid metabolite profile in renal transplant patients receiving enteric-coated mycophenolate sodium or mycophenolate mofetil. Transplant Proc 2005; 37 : 852–5. [Google Scholar]
  19. Van Gelder T, Le Meur Y, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit 2006; 28 : 145–54. [Google Scholar]
  20. Premaud A, Debord J, Rousseau A, et al. A double absorption-phase model adequately describes mycophenolic acid plasma profiles in de novo renal transplant recipients given oral mycophenolate mofetil. Clin Pharmacokinet 2005; 44 : 837–47. [Google Scholar]
  21. Van Gelder T, Hilbrands LB, Vanrenterghem Y, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 1999; 68 : 261–6. [Google Scholar]
  22. Le Meur Y, Buchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007; 7 : 2496–503. [Google Scholar]
  23. Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 2007; 357 : 2562–75. [Google Scholar]
  24. Thervet E, Legendre C, Beaune P, Anglicheau D. Cytochrome P450 3A polymorphisms and immunosuppressive drugs. Pharmacogenomics 2005; 6 : 37–47. [Google Scholar]
  25. Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74 : 245–54. [Google Scholar]
  26. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27 : 383–91. [Google Scholar]
  27. Thervet E, Anglicheau D, King B, et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76 : 1233–5. [Google Scholar]
  28. MacPhee IA, Fredericks S, Tai T, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 2004; 4 : 914–9. [Google Scholar]
  29. Haufroid V, Wallemacq P, VanKerckhove V, et al. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant 2006; 6 : 2706–13. [Google Scholar]
  30. Le Meur Y, Djebli N, Szelag JC, et al. CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin Pharmacol Ther 2006; 80 : 51–60. [Google Scholar]
  31. Anglicheau D, Le Corre D, Lechaton S, et al. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am J Transplant 2005; 5 : 595–603. [Google Scholar]
  32. Brouard S, Mansfield E, Braud C, et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc Natl Acad Sci USA 2007; 104 : 15448–53. [Google Scholar]
  33. Pallet N, Beaune P, Thervet E, et al. Inhibiteurs de mTOR : des antiprolifératifs pléiotropiques. Med Sci (Paris) 2006; 22 : 947–52. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.