Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 11, Novembre 2008
Page(s) 961 - 966
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082411961
Publié en ligne 15 novembre 2008
  1. Myers BD, Ross J, Newton L, et al. Cyclosporine-associated chronic nephropathy. N Engl J Med 1984; 311 : 699–705. [Google Scholar]
  2. Lindholm A, Kahan BD. Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther 1993; 54 : 205–18. [Google Scholar]
  3. Kasiske BL, Heim-Duthoy K, Rao KV, Awni WM. The relationship between cyclosporine pharmacokinetic parameters and subsequent acute rejection in renal transplant recipients. Transplantation 1988; 46 : 716–22. [Google Scholar]
  4. Keown P, Landsberg D, Halloran P, et al. A randomized, prospective multicenter pharmacoepidemiologic study of cyclosporine microemulsion in stable renal graft recipients. Report of the Canadian neoral renal transplantation study group. Transplantation 1996; 62 : 1744–52. [Google Scholar]
  5. Barone G, Chang CT, Choc MG Jr, et al. The pharmacokinetics of a microemulsion formulation of cyclosporine in primary renal allograft recipients. The neoral study Group. Transplantation 1996; 61 : 875–80. [Google Scholar]
  6. Mahalati K, Belitsky P, Sketris I, et al. Neoral monitoring by simplified sparse sampling area under the concentration-time curve: its relationship to acute rejection and cyclosporine nephrotoxicity early after kidney transplantation. Transplantation 1999; 68 : 55–62. [Google Scholar]
  7. International neoral renal transplantation study group. Cyclosporine microemulsion (Neoral) absorption profiling and sparse-sample predictors during the first 3 months after renal transplantation. Am J Transplant 2002; 2 : 148–56. [Google Scholar]
  8. Cantarovich M, Barkun JS, Tchervenkov JI, et al. Comparison of neoral dose monitoring with cyclosporine through levels versus 2-hr postdose levels in stable liver transplant patients. Transplantation 1998; 66 : 1621–7. [Google Scholar]
  9. Cantarovich M, Besner JG, Barkun JS, et al. Two-hour cyclosporine level determination is the appropriate tool to monitor Neoral therapy. Clin Transplant 1998; 12 : 243–9. [Google Scholar]
  10. Jaksch P, Kocher A, Neuhauser P, et al. Monitoring C2 level predicts exposure in maintenance lung transplant patients receiving the microemulsion formulation of cyclosporine (Neoral). J Heart Lung Transplant 2005; 24 : 1076–80. [Google Scholar]
  11. Levy G, Thervet E, Lake J, Uchida K. Patient management by Neoral C(2) monitoring: an international consensus statement. Transplantation 2002; 73 (suppl 9) : S12. [Google Scholar]
  12. Nashan B, Bock A, Bosmans JL, et al. Use of Neoral C monitoring: a European consensus. Transpl Int 2005; 18 : 768–78. [Google Scholar]
  13. Knight SR, Morris PJ. The clinical benefits of cyclosporine C2-level monitoring: a systematic review. Transplantation 2007; 83 : 1525–35. [Google Scholar]
  14. Glanville AR, Aboyoun CL, Morton JM, et al. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation. J Heart Lung Transplant 2006; 25 : 928–34. [Google Scholar]
  15. Shaw LM, Figurski M, Milone MC, et al. Therapeutic drug monitoring of mycophenolic acid. Clin J Am Soc Nephrol 2007; 2 : 1062–72. [Google Scholar]
  16. Gabardi S, Tran JL, Clarkson MR. Enteric-coated mycophenolate sodium. Ann Pharmacother 2003; 37 : 1685–93. [Google Scholar]
  17. Budde K, Glander P, Diekmann F, et al. Review of the immunosuppressant enteric-coated mycophenolate sodium. Expert Opin Pharmacother 2004; 5 : 1333–45. [Google Scholar]
  18. Tedesco-Silva H, Bastien MC, Choi L, et al. Mycophenolic acid metabolite profile in renal transplant patients receiving enteric-coated mycophenolate sodium or mycophenolate mofetil. Transplant Proc 2005; 37 : 852–5. [Google Scholar]
  19. Van Gelder T, Le Meur Y, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit 2006; 28 : 145–54. [Google Scholar]
  20. Premaud A, Debord J, Rousseau A, et al. A double absorption-phase model adequately describes mycophenolic acid plasma profiles in de novo renal transplant recipients given oral mycophenolate mofetil. Clin Pharmacokinet 2005; 44 : 837–47. [Google Scholar]
  21. Van Gelder T, Hilbrands LB, Vanrenterghem Y, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 1999; 68 : 261–6. [Google Scholar]
  22. Le Meur Y, Buchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007; 7 : 2496–503. [Google Scholar]
  23. Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 2007; 357 : 2562–75. [Google Scholar]
  24. Thervet E, Legendre C, Beaune P, Anglicheau D. Cytochrome P450 3A polymorphisms and immunosuppressive drugs. Pharmacogenomics 2005; 6 : 37–47. [Google Scholar]
  25. Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74 : 245–54. [Google Scholar]
  26. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27 : 383–91. [Google Scholar]
  27. Thervet E, Anglicheau D, King B, et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003; 76 : 1233–5. [Google Scholar]
  28. MacPhee IA, Fredericks S, Tai T, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 2004; 4 : 914–9. [Google Scholar]
  29. Haufroid V, Wallemacq P, VanKerckhove V, et al. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant 2006; 6 : 2706–13. [Google Scholar]
  30. Le Meur Y, Djebli N, Szelag JC, et al. CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin Pharmacol Ther 2006; 80 : 51–60. [Google Scholar]
  31. Anglicheau D, Le Corre D, Lechaton S, et al. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am J Transplant 2005; 5 : 595–603. [Google Scholar]
  32. Brouard S, Mansfield E, Braud C, et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc Natl Acad Sci USA 2007; 104 : 15448–53. [Google Scholar]
  33. Pallet N, Beaune P, Thervet E, et al. Inhibiteurs de mTOR : des antiprolifératifs pléiotropiques. Med Sci (Paris) 2006; 22 : 947–52. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.