Free Access
Med Sci (Paris)
Volume 24, Number 11, Novembre 2008
Page(s) 954 - 960
Section M/S revues
Published online 15 November 2008
  1. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination : the control of NF-κB activity. Annu Rev Immunol 2000; 18 : 621–63. [Google Scholar]
  2. Israël A. The IKK complex : an integrator of all signals that activate NF-κB ? Trends Cell Biol 2000; 10 : 129–33. [Google Scholar]
  3. Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004; 18 : 2195–224. [Google Scholar]
  4. Deng L, Wang C, Spencer E, et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103 : 351–61. [Google Scholar]
  5. Sebban H, Yamaoka S, Courtois G. Posttranslational modifications of NEMO and its partners in NF-κB signaling. Trends Cell Biol 2006; 16 : 569–77. [Google Scholar]
  6. Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 78 : 39–85. [Google Scholar]
  7. Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 2007; 8 : 49–62. [Google Scholar]
  8. Huang TT, Wuerzberger-Davis SM, Wu ZH, et al. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 2003; 115 : 565–76. [Google Scholar]
  9. Mabb AM, Wuerzberger-Davis SM, Miyamoto S. PIASy mediates NEMO sumoylation and NF-κB activation in response to genotoxic stress. Nat Cell Biol 2006; 8 : 986–93. [Google Scholar]
  10. Janssens S, Tinel A, Lippens S, et al. PIDD mediates NF-κB activation in response to DNA damage. Cell 2005; 123 : 1079–92. [Google Scholar]
  11. Wu ZH, Shi Y, Tibbetts RS, et al. Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science 2006; 311 : 1141–6. [Google Scholar]
  12. Hur GM, Lewis J, Yang Q, et al. The death domain kinase RIP has an essential role in DNA damage-induced NF-κB activation. Genes Dev 2003; 17 : 873–82. [Google Scholar]
  13. Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004; 304 : 843–6. [Google Scholar]
  14. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114 : 181–90. [Google Scholar]
  15. Wang CY, Cusack JC Jr, Liu R, et al. Control of inducible chemoresistance : enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nat Med 1999; 5 : 412–7. [Google Scholar]
  16. Takeuchi O, Akira S. Signaling pathways activated by microorganisms. Curr Opin Cell Biol 2007; 19 : 185–91. [Google Scholar]
  17. Kawai T, Akira S. TLR signaling. Cell Death Differ 2006; 13 : 816–25. [Google Scholar]
  18. Onomoto K, Yoneyama M, Fujita T. Regulation of antiviral innate immune responses by RIG-I family of RNA helicases. Curr Top Microbiol Immunol 2007; 316 : 193–205. [Google Scholar]
  19. Takaoka A, Wang Z, Choi MK, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007; 448 : 501–5. [Google Scholar]
  20. Hiscott J. Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 2007; 282 : 15325–9. [Google Scholar]
  21. Fitzgerald KA, McWhirter SM, Faia KL, et al. IKKe and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4 : 491–6. [Google Scholar]
  22. Sharma S, tenOever BR, Grandvaux N, et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 2003; 300 : 1148–51. [Google Scholar]
  23. Guo B, Cheng G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem 2007; 282 : 11817–26. [Google Scholar]
  24. Häcker H, Redecke V, Blagoev B, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2006; 439 : 204–7. [Google Scholar]
  25. Oganesyan G, Saha SK, Guo B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006; 439 : 208–11. [Google Scholar]
  26. Agalioti T, Lomvardas S, Parekh B, et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 2000; 103 : 667–78. [Google Scholar]
  27. Chariot A, Leonardi A, Muller J, et al. Association of the adaptor TANK with the IκB kinase (IKK) regulator NEMO connects IKK complexes with IKKε and TBK1 kinases. J Biol Chem 2002; 277 : 37029–36. [Google Scholar]
  28. Zhao T, Yang L, Sun Q, et al. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat Immunol 2007; 8 : 592–600. [Google Scholar]
  29. Kayagaki N, Phung Q, Chan S, et al. DUBA : a deubiquitinase that regulates type I Interferon production. Science 2007; 318 ; 1628–32. [Google Scholar]
  30. Andermarcher E, Bossis G, Farras R, Jariel-Encontre I, Piechaczyk M. La dégradation protéasomique : de l’adressage des protéines aux nouvelles perspectives thérapeutiques. Med Sci (Paris) 2005; 21 : 141–9. [Google Scholar]
  31. Lobry C, Weil R. Mécanismes régulateurs de la voie NF-kappaB dans les lymphocytes T. Med Sci (Paris) 2007; 23 : 857–61. [Google Scholar]
  32. Bisbal C, Salehzada T. La RNase L, une endoribonucléase au carrefour de la régulation des ARN viraux et cellulaires. Med Sci (Paris) 2008; 24 : 859–64. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.