Free Access
Med Sci (Paris)
Volume 24, Number 11, Novembre 2008
Page(s) 947 - 953
Section M/S revues
Published online 15 November 2008
  1. Shaw AJ, Goffinet B. Bryophyte bology. Cambridge : Cambridge University Press, 2000 : 476 p. [Google Scholar]
  2. De Sloover JL. Hépatiques, mousses et muscinées. Namur : Presses Universitaires, 1997 : 194 p. [Google Scholar]
  3. Glime JM, Saxena D. Uses of Bryophytes. New Delhi : Today and Tomorrow’s Printers and Publishers, 1991 : 100 p. [Google Scholar]
  4. Glime JM. Medicines and antibiotics. In : Bryophyte ecology, vol. 5, 2007. [Google Scholar]
  5. Asakawa Y. Chemical constituents of the bryophytes. Wien-New York : Springer Verlag, 1995 : 618 p. [Google Scholar]
  6. Asakawa Y. Biologically active compounds from bryophytes. Pure Appl Chem 2007; 79 : 557–80. [Google Scholar]
  7. Ainge GD, Gerard PJ, Hinkley SF, et al. Hodgsonox, a new class of sesquiterpene from the liverwort Lepidolaena hodgsoniae. Isolation directed by insecticidal activity. J Org Chem 2001; 66 : 2818–21. [Google Scholar]
  8. McCleary JA, Sypherd PS, Walkington DL. Mosses as possible sources of antibiotics. Science 1960; 131 : 108. [Google Scholar]
  9. Kahn A. Des plantes et des hommes. Med Sci (Paris) 2001; 17 : 825–8. [Google Scholar]
  10. Scher JM, Speakman JB, Zapp J, et al. Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S.F. Gray. Phytochemistry 2004; 65 : 2583–8. [Google Scholar]
  11. Spjut RW, Suffness M, Cragg GM, et al. Mosses, liverworts, and hornworts screened for antitumor agents. Econ Bot 1986; 40 : 310–38. [Google Scholar]
  12. Arnal I, Sassoon I, Tournebize R. Dynamique du fuseau : vers une cible anti-cancéreuse. Med Sci (Paris) 2002; 18 : 1227–35. [Google Scholar]
  13. Pommier Y, Kohn KW. Cycle cellulaire et points de contrôle : nouvelles cibles thérapeutiques. Med Sci (Paris) 2003; 19 : 173–86. [Google Scholar]
  14. Sakai K, Ichikawa T, Yamada K, et al. Antitumor principles in mosses : the first isolation and identification of maytansinoids, including a novel 15-methoxyansamitocin P-3. J Nat Prod 1988; 51 : 845–50. [Google Scholar]
  15. Suwanborirux K, Chang CJ, Spjut RW, et al. Ansamitocin P-3, a maytansinoid, from Claopodium crispifolium and Anomodon attenuatus or associated actinomycetes. Experientia 1990; 46 : 117–20. [Google Scholar]
  16. Perry NB, Burgess EJ, Tangney RS. Cytotoxic 8,9-secokaurane diterpenes from a New Zealand liverwort, Lepidolaena taylorii. Tetrahedron Lett 1996; 37 : 9387–90. [Google Scholar]
  17. Perry NB, Burgess EJ, Baek SH, et al. 11-oxygenated cytotoxic 8,9-secokauranes from a New Zealand liverwort, Lepidolaena taylorii. Phytochemistry 1999; 50 : 423–33. [Google Scholar]
  18. Perry NB, Burgess EJ, Baek SH, et al. The first atisane diterpenoids from a liverwort : polyols from Lepidolaena clavigera. Org Lett 2001; 3 : 4243–5. [Google Scholar]
  19. Nagashima F, Kasai W, Kondoh M, et al. New ent-kaurene-type diterpenoids possessing cytotoxicity from the New Zealand liverwort Jungermannia species. Chem Pharm Bull (Tokyo) 2003; 51 : 1189–92. [Google Scholar]
  20. Nagashima F, Kondoh M, Fujii M, et al. Novel cytotoxic kaurane-type diterpenoids from the New Zealand Liverwort Jungermannia species. Tetrahedron 2005; 61 : 4531–44. [Google Scholar]
  21. Kondoh M, Nagashima F, Suzuki I, et al. Induction of apoptosis by new ent-kaurene-type diterpenoids isolated from the New Zealand liverwort Jungermannia species. Planta Med 2005; 71 : 1005–9. [Google Scholar]
  22. Wu C, Gunatilaka AA, McCabe FL, et al. Bioactive and other sesquiterpenes from Chiloscyphus rivularis. J Nat Prod 1997; 60 : 1281–6. [Google Scholar]
  23. Scher JM, Burgess EJ, Lorimer SD, et al. A cytotoxic sesquiterpene and unprecedented sesquiterpene-bisbibenzyl compounds from the liverwort Schistochila glaucescens. Tetrahedron 2002; 58 : 7875–82. [Google Scholar]
  24. Spjut RW, Cassady JM, McCloud T, et al. Variation in cytotoxicity and antitumor activity among samples of the moss Claopodium crispifolium (Thuidiaceae). Econ Bot 1988; 42 : 62–72. [Google Scholar]
  25. Davey ML, Currah RS. Interactions between mosses (Bryophyta) and fungi. Can J Bot 2006; 84 : 1509–19. [Google Scholar]
  26. Opelt K, Berg G. Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic sea coast. Appl Environ Microbiol 2004; 70 : 6569–79. [Google Scholar]
  27. Read DJ, Ducket JG, Francis R, et al. Symbiotic fungal associations in « lower » land plants. Philos Trans R Soc Lond B Biol Sci 2000; 355 : 815–31. [Google Scholar]
  28. Cassady JM, Chan KK, Floss HG, et al. Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull (Tokyo) 2004; 52 : 1–26. [Google Scholar]
  29. Siddiqui IR, Singh PK, Singh J. Synthesis and fungicidal activity of novel 4,4’-bis(2’ ‘-aryl-5’ -methyl/unsubstituted-4’ ‘-oxo-thiazolidin-3’ ‘-yl) bibenzyl. J Agric Food Chem 2003; 51 : 7062–5. [Google Scholar]
  30. Barrero AF, Herrador MM, Quilez del Moral JF, et al. Couplings of benzylic halides mediated by titanocene chloride : synthesis of bibenzyl derivatives. J Org Chem 2007; 72 : 2251–4. [Google Scholar]
  31. Hohe A, Reski R. From axenic spore germination to molecular farming. One century of bryophyte in vitro culture. Plant Cell Rep 2005; 23 : 513–21. [Google Scholar]
  32. Kingston DG. Taxol and its analogs. In : Cragg GM, Kingston DG, Newman DJ, eds. Anticancer agents from natural products. Boca Raton : CRC Press, 2005 : 89–122. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.