Free Access
Issue
Med Sci (Paris)
Volume 24, Number 8-9, Août-Septembre 2008
Page(s) 725 - 730
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082489725
Published online 15 August 2008
  1. Weinberg RA. The biology of cancer. New York : Garland Science 2006. [Google Scholar]
  2. Allis CD, Jenuwein T, Reinberg D, et al. Epigenetics. New York : Cold Spring Harbor Laboratory Press, 2006. [Google Scholar]
  3. Gabory A, Dandolo D. Épigénétique et développement : l’empreinte parentale. Med Sci (Paris) 2005; 21 : 390–5. [Google Scholar]
  4. Rideout WM, Coetzee GA, Olumi AF, et al. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 1990; 249 : 1288–90. [Google Scholar]
  5. Klose RJ, Bird AP. Genomic DNA methylation : the mark and its mediators. Trends Biochem Sci 2006; 31 : 89–97. [Google Scholar]
  6. Deltour S, Chopin V, Leprince D. Modifications épigénétiques et cancer. Med Sci (Paris) 2005; 21 : 405–11. [Google Scholar]
  7. Chen RZ, Pettersson U, Beard C, et al. DNA hypomethylation leads to elevated mutation rates. Nature 1998; 395 : 89–93. [Google Scholar]
  8. Gazin C, Wajapeyee N, Gobeil S, et al. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 2007; 449 : 1073–7. [Google Scholar]
  9. Hendrich B, Tweedie S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet 2003; 19 : 269–77. [Google Scholar]
  10. Filion GJ, Zhenilo S, Salozhin S, et al. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol 2006; 26 : 169–81. [Google Scholar]
  11. Bostick M, Kim JM, Esteve PO, et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 2007; 317 : 1760–4. [Google Scholar]
  12. Sansom OJ, Maddison K, Clarke AR. Mechanisms of disease : methyl-binding domain proteins as potential therapeutic targets in cancer. Nat Clin Pract Oncol 2007; 4 : 305–15. [Google Scholar]
  13. Ray-Gallet D, Gerard A, Polo S, et al. Variations sur le thème du code histone. Med Sci (Paris) 2005; 21 : 384–9. [Google Scholar]
  14. Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391 : 815–8. [Google Scholar]
  15. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37 : 391–400. [Google Scholar]
  16. Kuzmichev A, Margueron R, Vaquero A, et al. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 2005; 102 : 1859–64. [Google Scholar]
  17. Ropero S, Fraga MF, Ballestar E, et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 2006; 38 : 566–9. [Google Scholar]
  18. Lund AH, Van Lohuizen M. Epigenetics and cancer. Genes Dev 2004; 18 : 2315–35. [Google Scholar]
  19. Celeste AS, Difilippantonio MJ. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003; 114 : 371–83. [Google Scholar]
  20. Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat Rev Cancer 2007; 7 : 899–910. [Google Scholar]
  21. Kirschmann DA, Lininger RA, Gardner LM, et al. Down-regulation of HP1Hsalpha expression is associated with the metastatic phenotype in breast cancer. Cancer Res 2000; 60 : 3359–63. [Google Scholar]
  22. Kumar MS, Lu J, Mercer KL, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39 : 673–7. [Google Scholar]
  23. Esquela-Kerscher A, Slack FJ. Oncomirs : microRNAs with a role in cancer. Nat Rev Cancer 2006; 6 : 259–69. [Google Scholar]
  24. Bouzinba-Segard H, Guais A, Francastel C. Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 2006; 103 : 8709–14. [Google Scholar]
  25. Groth A, Rocha W, Verreault A, et al. Chromatin challenges during DNA replication and repair. Cell 2007; 128 : 721–33. [Google Scholar]
  26. Baylin S, Bestor TH.Altered methylation patterns in cancer cell genomes : cause or consequence ? Cancer Cell 2002; 1 : 299–305. [Google Scholar]
  27. Esteller M. Epigenetic gene silencing in cancer : the DNA hypermethylome. Hum Mol Genet 2007; 16 : R50–9. [Google Scholar]
  28. Gius D, Cui H, Bradbury CM, et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 2004; 6 : 361–71. [Google Scholar]
  29. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2 : 243–7. [Google Scholar]
  30. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8 : 253–62. [Google Scholar]
  31. Képès F. L’épigénétique comme aspect de la postgénomique. Med Sci (Paris) 2005; 21 : 371–6. [Google Scholar]
  32. Fuks F. Les méthyltransférases de l’ADN : du remodelage de la chromatine au cancer. Med Sci (Paris) 2003; 19 : 477–80. [Google Scholar]
  33. Verreault A. Hétérochromatine : un silence bien bruyant. Med Sci (Paris) 2003; 19 : 1181–2. [Google Scholar]
  34. Mottet D, Castronovo V. Les histones désacétylases : nouvelles cibles thérapeutiques anti-cancéreuses. Med Sci (Paris) 2008; 24 : 742–6. [Google Scholar]
  35. Rousseaux S, Reynoird N, Gaucher J, Khochbin S. L’intrusion des régulateurs de l’épigénome mâle dans les cellules somatiques cancéreuses. Med Sci (Paris) 2008; 24 : 735–41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.