Free Access
Issue
Med Sci (Paris)
Volume 24, Number 8-9, Août-Septembre 2008
Page(s) 731 - 734
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082489731
Published online 15 August 2008
  1. Morange M. Quelle place pour l’épigénétique ? Med Sci (Paris) 2005; 21 : 367–9. [Google Scholar]
  2. Henckel A, Robert Feil R. Asymétrie des génomes parentaux : implications en pathologie. Med Sci (Paris) 2008; 24 : 747–52. [Google Scholar]
  3. Gabory A, Dandolo L. Épigénétique et développement : l’empreinte parentale. Med Sci (Paris) 2005; 21 : 390–5. [Google Scholar]
  4. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16 : 6–21. [Google Scholar]
  5. Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005; 37 : 853–62. [Google Scholar]
  6. Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008; 452 : 215–9. [Google Scholar]
  7. Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 2006; 38 : 1378–85. [Google Scholar]
  8. Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007; 39 : 457–66. [Google Scholar]
  9. Laget S, Defossez PA. Le double jeu de l’épigénétique : cible et acteur du cancer. Med Sci (Paris) 2008; 24 : 725–30. [Google Scholar]
  10. Deltour S, Chopin V, Leprince D. Modifications épigénétiques et cancer. Med Sci (Paris) 2005; 21 : 405–11. [Google Scholar]
  11. Linhart HG, Lin H, Yamada Y, et al. Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev 2007; 21 : 3110–22. [Google Scholar]
  12. Simpson AJ, Caballero OL, Jungbluth A, et al. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5 : 615–25. [Google Scholar]
  13. Rousseaux S, Reynoird N, Gaucher J, Khochbin S. L’intrusion des régulateurs de l’épigénome mâle dans les cellules somatiques cancéreuses. Med Sci (Paris) 2008; 24 : 735–41. [Google Scholar]
  14. Shann YJ, Cheng C, Chiao CH, et al. Genome-wide mapping and characterization of hypomethylated sites in human tissues and breast cancer cell lines. Genome Res 2008; 18 : 791–801. [Google Scholar]
  15. Rauch TA, Zhong X, Wu X, et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci USA 2008; 105 : 252–7. [Google Scholar]
  16. Gazin C, Wajapeyee N, Gobeil S, et al. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 2007; 449 : 1073–7. [Google Scholar]
  17. Ho SM, Tang WY, Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 2006; 66 : 5624–32. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.