Free Access
Med Sci (Paris)
Volume 24, Number 8-9, Août-Septembre 2008
Page(s) 720 - 724
Section M/S revues
Published online 15 August 2008
  1. Heitz E. Das heterochromatin der Moose. Jb Wiss Bot 1928; 69 : 728. [Google Scholar]
  2. Peters AH, Schubeler D. Methylation of histones: playing memory with DNA. Curr Opin Cell Biol 2005; 17 : 230–8. [Google Scholar]
  3. Probst AV, Almouzni G. Pericentric heterochromatin: dynamic organization during early development in mammals. Differentiation 2008; 76 : 15–23. [Google Scholar]
  4. Choo KH. Domain organization at the centromere and neocentromere. Dev Cell 2001; 1 : 165–77. [Google Scholar]
  5. Pezer Z, Ugarkovic D. Role of non-coding RNA and heterochromatin in aneuploidy and cancer. Semin Cancer Biol 2008; 18 : 123–30. [Google Scholar]
  6. Volpe TA, Kidner C, Hall IM, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002; 297 : 1833–7. [Google Scholar]
  7. Verdel A, Jia S, Gerber S, et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 2004; 303 : 672–6. [Google Scholar]
  8. Folco HD, Pidoux AL, Urano T, et al. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 2008; 319 : 94–7. [Google Scholar]
  9. Chen ES, Zhang K, Nicolas E, et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 2008; 451 : 734–7. [Google Scholar]
  10. Rudert F, Bronner S, Garnier JM, et al. Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm Genome 1995; 6 : 76–83. [Google Scholar]
  11. Lehnertz B, Ueda Y, Derijck AA, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 2003; 13 : 1192–200. [Google Scholar]
  12. Topp CN, Zhong CX, Dawe RK. Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 2004; 101 : 15986–91. [Google Scholar]
  13. Fukagawa T, Nogami M, Yoshikawa M, et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 2004; 6 : 784–91. [Google Scholar]
  14. Maison C, Bailly D, Peters AH, et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 2002; 30 : 329–34. [Google Scholar]
  15. Arney KL, Bao S, Bannister AJ, et al. Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 2002; 46 : 317–20. [Google Scholar]
  16. Probst AV, Santos F, Reik W, et al. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 2007; 116 : 403–15. [Google Scholar]
  17. Puschendorf M, Terranova R, Boutsma E, et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 2008; 40 : 411–20. [Google Scholar]
  18. Peters AH, Kubicek S, Mechtler K, et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2003; 12 : 1577–89. [Google Scholar]
  19. Manuelidis L. Indications of centromere movement during interphase and differentiation. Ann NY Acad Sci 1985; 450 : 205–21. [Google Scholar]
  20. Alcobia I, Dilao R, Parreira L. Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 2000; 95 : 1608–15. [Google Scholar]
  21. Terranova R, Sauer S, Merkenschlager M, et al. The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Exp Cell Res 2005; 310 : 344–56. [Google Scholar]
  22. Baxter J, Sauer S, Peters A, et al. Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes. EMBO J 2004; 23 : 4462–72. [Google Scholar]
  23. Grigoryev SA, Nikitina T, Pehrson JR, et al. Dynamic relocation of epigenetic chromatin markers reveals an active role of constitutive heterochromatin in the transition from proliferation to quiescence. J Cell Sci 2004; 117 : 6153–62. [Google Scholar]
  24. Martin C, Beaujean N, Brochard V, et al. Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 2006; 292 : 317–32. [Google Scholar]
  25. Terranova R, Pereira CF, Du Roure C, et al. Acquisition and extinction of gene expression programs are separable events in heterokaryon reprogramming. J Cell Sci 2006; 119 : 2065–72. [Google Scholar]
  26. Dernburg AF, Broman KW, Fung JC, et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 1996; 85 : 745–59. [Google Scholar]
  27. Lanctot C, Cheutin T, Cremer M, et al. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 2007; 8 : 104–15. [Google Scholar]
  28. Roldan E, Fuxa M, Chong W, et al. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 2005; 6 : 31–41. [Google Scholar]
  29. Grewal SI, Jia S. Heterochromatin revisited. Nat Rev Genet 2007; 8 : 35–46. [Google Scholar]
  30. Yuen KW, Montpetit B, Hieter P. The kinetochore and cancer: what’s the connection ? Curr Opin Cell Biol 2005; 17 : 576–82. [Google Scholar]
  31. Boveri. Zur Frage der Entstehung maligner Tumoren (The origin of malignant tumors). Jena : Gustav Fischer, 1914. [Google Scholar]
  32. Weaver BA, Silk AD, Montagna C, et al. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007; 11 : 25–36. [Google Scholar]
  33. Carroll CW, Straight AF. Centromere formation: from epigenetics to self-assembly. Trends Cell Biol 2006; 16 : 70–8. [Google Scholar]
  34. Peters AH, O’Carroll D, Scherthan H, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001; 107 : 323–37. [Google Scholar]
  35. Taddei A, Maison C, Roche D, et al. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 2001; 3 : 114–20. [Google Scholar]
  36. Bouzinba-Segard H, Guais A, Francastel C. Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 2006; 103 : 8709–14. [Google Scholar]
  37. Verreault A. Hétérochromatine : un silence bien bruyant. Med Sci (Paris) 2003; 19 : 1181–2. [Google Scholar]
  38. Nègre N, Cavalli G. Polycomb maîtrise la destinée cellulaire. Med Sci (Paris) 2006; 22 : 1033–5. [Google Scholar]
  39. Labbé JP. Élasticité du centromère. Med Sci (Paris) 2005; 21 : 261–6. [Google Scholar]
  40. Pâques F, Grange T. Architecture du noyau et régulation transcriptionnelle. Med Sci (Paris) 2002; 18 : 1245–56. [Google Scholar]
  41. Henckel A, Feil R. Asymétrie des génomes parentaux : implications en pathologie Med Sci (Paris) 2008; 24 : 747–52. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.