Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 8-9, Août-Septembre 2008
Page(s) 720 - 724
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082489720
Publié en ligne 15 août 2008
  1. Heitz E. Das heterochromatin der Moose. Jb Wiss Bot 1928; 69 : 728.
  2. Peters AH, Schubeler D. Methylation of histones: playing memory with DNA. Curr Opin Cell Biol 2005; 17 : 230–8.
  3. Probst AV, Almouzni G. Pericentric heterochromatin: dynamic organization during early development in mammals. Differentiation 2008; 76 : 15–23.
  4. Choo KH. Domain organization at the centromere and neocentromere. Dev Cell 2001; 1 : 165–77.
  5. Pezer Z, Ugarkovic D. Role of non-coding RNA and heterochromatin in aneuploidy and cancer. Semin Cancer Biol 2008; 18 : 123–30.
  6. Volpe TA, Kidner C, Hall IM, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002; 297 : 1833–7.
  7. Verdel A, Jia S, Gerber S, et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 2004; 303 : 672–6.
  8. Folco HD, Pidoux AL, Urano T, et al. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 2008; 319 : 94–7.
  9. Chen ES, Zhang K, Nicolas E, et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 2008; 451 : 734–7.
  10. Rudert F, Bronner S, Garnier JM, et al. Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm Genome 1995; 6 : 76–83.
  11. Lehnertz B, Ueda Y, Derijck AA, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 2003; 13 : 1192–200.
  12. Topp CN, Zhong CX, Dawe RK. Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 2004; 101 : 15986–91.
  13. Fukagawa T, Nogami M, Yoshikawa M, et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 2004; 6 : 784–91.
  14. Maison C, Bailly D, Peters AH, et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 2002; 30 : 329–34.
  15. Arney KL, Bao S, Bannister AJ, et al. Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 2002; 46 : 317–20.
  16. Probst AV, Santos F, Reik W, et al. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 2007; 116 : 403–15.
  17. Puschendorf M, Terranova R, Boutsma E, et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 2008; 40 : 411–20.
  18. Peters AH, Kubicek S, Mechtler K, et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2003; 12 : 1577–89.
  19. Manuelidis L. Indications of centromere movement during interphase and differentiation. Ann NY Acad Sci 1985; 450 : 205–21.
  20. Alcobia I, Dilao R, Parreira L. Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 2000; 95 : 1608–15.
  21. Terranova R, Sauer S, Merkenschlager M, et al. The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Exp Cell Res 2005; 310 : 344–56.
  22. Baxter J, Sauer S, Peters A, et al. Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes. EMBO J 2004; 23 : 4462–72.
  23. Grigoryev SA, Nikitina T, Pehrson JR, et al. Dynamic relocation of epigenetic chromatin markers reveals an active role of constitutive heterochromatin in the transition from proliferation to quiescence. J Cell Sci 2004; 117 : 6153–62.
  24. Martin C, Beaujean N, Brochard V, et al. Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 2006; 292 : 317–32.
  25. Terranova R, Pereira CF, Du Roure C, et al. Acquisition and extinction of gene expression programs are separable events in heterokaryon reprogramming. J Cell Sci 2006; 119 : 2065–72.
  26. Dernburg AF, Broman KW, Fung JC, et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 1996; 85 : 745–59.
  27. Lanctot C, Cheutin T, Cremer M, et al. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 2007; 8 : 104–15.
  28. Roldan E, Fuxa M, Chong W, et al. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 2005; 6 : 31–41.
  29. Grewal SI, Jia S. Heterochromatin revisited. Nat Rev Genet 2007; 8 : 35–46.
  30. Yuen KW, Montpetit B, Hieter P. The kinetochore and cancer: what’s the connection ? Curr Opin Cell Biol 2005; 17 : 576–82.
  31. Boveri. Zur Frage der Entstehung maligner Tumoren (The origin of malignant tumors). Jena : Gustav Fischer, 1914.
  32. Weaver BA, Silk AD, Montagna C, et al. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007; 11 : 25–36.
  33. Carroll CW, Straight AF. Centromere formation: from epigenetics to self-assembly. Trends Cell Biol 2006; 16 : 70–8.
  34. Peters AH, O’Carroll D, Scherthan H, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001; 107 : 323–37.
  35. Taddei A, Maison C, Roche D, et al. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 2001; 3 : 114–20.
  36. Bouzinba-Segard H, Guais A, Francastel C. Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 2006; 103 : 8709–14.
  37. Verreault A. Hétérochromatine : un silence bien bruyant. Med Sci (Paris) 2003; 19 : 1181–2.
  38. Nègre N, Cavalli G. Polycomb maîtrise la destinée cellulaire. Med Sci (Paris) 2006; 22 : 1033–5.
  39. Labbé JP. Élasticité du centromère. Med Sci (Paris) 2005; 21 : 261–6.
  40. Pâques F, Grange T. Architecture du noyau et régulation transcriptionnelle. Med Sci (Paris) 2002; 18 : 1245–56.
  41. Henckel A, Feil R. Asymétrie des génomes parentaux : implications en pathologie Med Sci (Paris) 2008; 24 : 747–52.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.