Free Access
Issue
Med Sci (Paris)
Volume 24, Number 3, Mars 2008
Page(s) 270 - 276
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008243270
Published online 15 March 2008
  1. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 2006; 15 (suppl 2) : R271–7. [Google Scholar]
  2. Dardente H, Cermakian N. Les noyaux suprachiasmatiques : une horloge circadienne composée. Med Sci (Paris) 2005; 21 : 66–72. [Google Scholar]
  3. Dardente H, Cermakian N. Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 2007; 24 : 195–213. [Google Scholar]
  4. Kalsbeek A, Palm IF, La Fleur SE, et al. SCN outputs and the hypothalamic balance of life. J Biol Rhythms 2006; 21 : 458–69. [Google Scholar]
  5. Pando MP, Morse D, Cermakian N, et al. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 2002; 110 : 107–17. [Google Scholar]
  6. Guo H, McKinley Brewer J, Lehman MN, et al. Expression in hamster peripheral organs : effects of transplanting the pacemaker. J Neurosci 2006; 26 : 6406–12. [Google Scholar]
  7. McDearmon EL, Patel KN, Ko CH, et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 2006; 314 : 1304–8. [Google Scholar]
  8. Hong HK, Chong JL, Song W, et al. Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior. PLoS Genet 2007; 3 : e33. [Google Scholar]
  9. Kornmann B, Schaad O, Bujard H, et al. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 2007; 5 : e34. [Google Scholar]
  10. Storch KF, Paz C, Signorovitch J, et al. Intrinsic circadian clock of the mammalian retina : importance for retinal processing of visual information. Cell 2007; 130 : 730–41. [Google Scholar]
  11. Debruyne JP, Noton E, Lambert CM, et al. A clock shock : mouse CLOCK is not required for circadian oscillator function. Neuron 2006; 50 : 465–77. [Google Scholar]
  12. DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 2007; 10 : 543–5. [Google Scholar]
  13. DeBruyne JP, Weaver DR, Reppert SM. Peripheral circadian oscillators require CLOCK. Curr Biol 2007; 17 : R538–9. [Google Scholar]
  14. Yamaguchi S, Mitsui S, Miyake S, et al. The 5’ upstream region of mPer1 gene contains two promoters and is responsible for circadian oscillation. Curr Biol 2000; 10 : 873–6. [Google Scholar]
  15. Triqueneaux G, Thenot S, Kakizawa T, et al. The orphan receptor Rev-erbalpha gene is a target of the circadian clock pacemaker. J Mol Endocrinol 2004; 33 : 585–608. [Google Scholar]
  16. Harms E, Kivimae S, Young MW, et al. Posttranscriptional and posttranslational regulation of clock genes. J Biol Rhythms 2004; 19 : 361–73. [Google Scholar]
  17. Cheng HY, Papp JW, Varlamova O, et al. microRNA modulation of circadian-clock period and entrainment. Neuron 2007; 54 : 813–29. [Google Scholar]
  18. Kojima S, Matsumoto K, Hirose M, et al. LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1. Proc Natl Acad Sci USA 2007; 104 : 1859–64. [Google Scholar]
  19. Green CB, Douris N, Kojima S, et al. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci USA 2007; 104 : 9888–93. [Google Scholar]
  20. Gatfield D, Schibler U. Physiology. Proteasomes keep the circadian clock ticking. Science 2007; 316 : 1135–6. [Google Scholar]
  21. Duffield GE. DNA microarray analyses of circadian timing : the genomic basis of biological time. J Neuroendocrinol 2003; 15 : 991–1002. [Google Scholar]
  22. Takahashi JS. Finding new clock components : past and future. J Biol Rhythms 2004; 19 : 339–47. [Google Scholar]
  23. Kondratov RV, Kondratova AA, Gorbacheva VY, et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 2006; 20 : 1868–73. [Google Scholar]
  24. Xu Y, Toh KL, Jones CR, et al. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 2007; 128 : 59–70. [Google Scholar]
  25. Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280 : 1564–9. [Google Scholar]
  26. Lowrey PL, Takahashi JS. Mammalian circadian biology : elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 2004; 5 : 407–41. [Google Scholar]
  27. Dudley CA, Erbel-Sieler C, Estill SJ, et al. Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 2003; 301 : 379–83. [Google Scholar]
  28. Reick M, Garcia JA, Dudley C, et al. NPAS2 : an analog of clock operative in the mammalian forebrain. Science 2001; 293 : 506–9. [Google Scholar]
  29. McNamara P, Seo SP, Rudic RD, et al. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature : a humoral mechanism to reset a peripheral clock. Cell 2001; 105 : 877–89. [Google Scholar]
  30. Shearman LP, Zylka MJ, Reppert SM, et al. Expression of basic helix-loop-helix/PAS genes in the mouse suprachiasmatic nucleus. Neuroscience 1999; 89 : 387–97. [Google Scholar]
  31. Yoo SH, Yamazaki S, Lowrey PL, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 2004; 101 : 5339–46. [Google Scholar]
  32. Guillaumond F, Dardente H, Giguere V, et al. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 2005; 20 : 391–403. [Google Scholar]
  33. Zylka MJ, Shearman LP, Levine JD, et al. Molecular analysis of mammalian timeless. Neuron 1998; 21 : 1115–22. [Google Scholar]
  34. Feillet CA, Mendoza J, Albrecht U, et al. Forebrain oscillators ticking with different clock hands. Mol Cell Neurosci 2008; 37 : 209–21. [Google Scholar]
  35. Yang X, Downes M, Yu RT, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006; 126 : 801–10. [Google Scholar]
  36. Prolo LM, Takahashi JS, Herzog ED. Circadian rhythm generation and entrainment in astrocytes. J Neurosci 2005; 25 : 404–8. [Google Scholar]
  37. Low-Zeddies SS, Takahashi JS. Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell 2001; 105 : 25–42. [Google Scholar]
  38. Herzog ED, Aton SJ, Numano R, et al. Temporal precision in the mammalian circadian system : a reliable clock from less reliable neurons. J Biol Rhythms 2004; 19 : 35–46. [Google Scholar]
  39. Liu AC, Welsh DK, Ko CH, et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 2007; 129 : 605–16. [Google Scholar]
  40. Maywood ES, O’Neill JS, Chesham JE, et al. The circadian clockwork of the suprachiasmatic nuclei : analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology 2007; 148 : 5624–34. [Google Scholar]
  41. Aton SJ, Herzog ED. Come together, right… now : synchronization of rhythms in a mammalian circadian clock. Neuron 2005; 48 : 531–4. [Google Scholar]
  42. Teboul M, Delaunay F. Le récepteur nucléaire orphelin Rev-erba oscille entre répression et activation. Med Sci (Paris) 2003; 19 : 411–3. [Google Scholar]
  43. Kornmann B. L’horloge circadienne centrale et les horloges périphériques : décentralisation et contrôle hiérarchique. Med Sci (Paris) 2007; 23 : 349–50. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.