Free Access
Issue
Med Sci (Paris)
Volume 24, Number 3, Mars 2008
Page(s) 277 - 283
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008243277
Published online 15 March 2008
  1. Madsen E, Gitlin JD. Copper and iron disorders of the brain. Annu Rev Neurosci 2007; 30 : 317–37. [Google Scholar]
  2. La Fontaine S, Mercer JF. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 2007; 463 : 149–67. [Google Scholar]
  3. Puig S, Lee J, Lau M, Thiele DJ. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 2002; 277 : 26021–30. [Google Scholar]
  4. Rees EM, Lee J, Thiele DJ. Mobilization of intracellular copper stores by the Ctr2 vacuolar copper transporter. J Biol Chem 2004; 279 : 54221–29. [Google Scholar]
  5. Zhou H, Thiele DJ. Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 2001; 276 : 20529–35. [Google Scholar]
  6. Beaudoin J, Laliberté J, Labbé S. Functional dissection of Ctr4 and Ctr5 amino-terminal regions reveals motifs with redundant roles in copper transport. Microbiology 2006; 152 : 209–22. [Google Scholar]
  7. Bellemare DR, Shaner L, Morano KA, et al. Ctr6, a vacuolar membrane copper transporter in Schizosaccharomyces pombe. J Biol Chem 2002; 277 : 46676–86. [Google Scholar]
  8. Zhou B, Gitschier J. hCTR1, a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA 1997; 94 : 7481–6. [Google Scholar]
  9. Lee J, Prohaska JR, Thiele DJ. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci USA 2001; 98 : 6842–47. [Google Scholar]
  10. Rae TD, Schmidt PJ, Pufahl RA, et al. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 1999; 284 : 805–8. [Google Scholar]
  11. Glerum DM, Shtanko A, Tzagoloff A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 1996; 271 : 14504–9. [Google Scholar]
  12. Lin SJ, Pufahl RA, Dancis A, et al. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 1997; 272 : 9215–20. [Google Scholar]
  13. Schmidt PJ, Rae TD, Pufahl RA, et al. Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J Biol Chem 1999; 274 : 23719–25. [Google Scholar]
  14. Furukawa Y, Torres AS, O’Halloran TV. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 2004; 23 : 2872–81. [Google Scholar]
  15. Sturtz LA, Diekert K, Jensen LT, et al. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, Ccs, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 2001; 276 : 38084–9. [Google Scholar]
  16. Field LS, Furukawa Y, O’Halloran, TV, Culotta VC. Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 2003; 278 : 28052–9. [Google Scholar]
  17. Cobine PA, Ojeda LD, Rigby KM, Winge DR. Yeast contains a non-proteinaceous pool of copper in the mitochondrial matrix. J Biol Chem 2004; 279 : 14447–55. [Google Scholar]
  18. Laliberté J, Whitson LJ, Beaudoin J, et al. The Schizosaccharomyces pombe Pccs protein functions in both copper trafficking and metal detoxification pathways. J Biol Chem 2004; 279 : 28744–55. [Google Scholar]
  19. Rae TD, Torres AS, Pufahl RA, O’Halloran TV. Mechanism of Cu, Zn-superoxide dismutase activation by the human metallochaperone hCCS. J Biol Chem 2001; 276 : 5166–76. [Google Scholar]
  20. Subramaniam JR, Lyons WE, Liu J, et al. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat Neurosci 2002; 5 : 301–7. [Google Scholar]
  21. Cobine PA, Pierrel F, Winge DR. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim Biophys Acta 2006; 1763 : 759–72. [Google Scholar]
  22. Horng YC, Cobine PA, Maxfield AB, et al. Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 2004; 279 : 35334–40. [Google Scholar]
  23. Leary SC, Cobine PA, Kaufman BA, et al. The human cytochrome c oxidase assembly factors Sco1 and Sco2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab 2007; 5 : 9–20. [Google Scholar]
  24. Yuan DS, Stearman R, Dancis A, et al. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci USA 1995; 92 : 2632–6. [Google Scholar]
  25. Banci L, Bertini I, Cantini F, et al. The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction. Nat Chem Biol 2006; 2 : 367–8. [Google Scholar]
  26. Rees EM, Thiele DJ. From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms. Curr Opin Microbiol 2004; 7 : 175–84. [Google Scholar]
  27. Peña MMO, Puig S, Thiele DJ. Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem 2000; 275 : 33244–51. [Google Scholar]
  28. Aller SG, Eng ET, De Feo CJ, Unger VM. Eukaryotic Ctr copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. J Biol Chem 2004; 279 : 53435–41. [Google Scholar]
  29. Cobine PA, Pierrel F, Bestwick ML, Winge DR. Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase. J Biol Chem 2006; 281 : 36552–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.