Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 3, Mars 2008
Page(s) 277 - 283
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008243277
Publié en ligne 15 mars 2008
  1. Madsen E, Gitlin JD. Copper and iron disorders of the brain. Annu Rev Neurosci 2007; 30 : 317–37. [Google Scholar]
  2. La Fontaine S, Mercer JF. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 2007; 463 : 149–67. [Google Scholar]
  3. Puig S, Lee J, Lau M, Thiele DJ. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 2002; 277 : 26021–30. [Google Scholar]
  4. Rees EM, Lee J, Thiele DJ. Mobilization of intracellular copper stores by the Ctr2 vacuolar copper transporter. J Biol Chem 2004; 279 : 54221–29. [Google Scholar]
  5. Zhou H, Thiele DJ. Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 2001; 276 : 20529–35. [Google Scholar]
  6. Beaudoin J, Laliberté J, Labbé S. Functional dissection of Ctr4 and Ctr5 amino-terminal regions reveals motifs with redundant roles in copper transport. Microbiology 2006; 152 : 209–22. [Google Scholar]
  7. Bellemare DR, Shaner L, Morano KA, et al. Ctr6, a vacuolar membrane copper transporter in Schizosaccharomyces pombe. J Biol Chem 2002; 277 : 46676–86. [Google Scholar]
  8. Zhou B, Gitschier J. hCTR1, a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA 1997; 94 : 7481–6. [Google Scholar]
  9. Lee J, Prohaska JR, Thiele DJ. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci USA 2001; 98 : 6842–47. [Google Scholar]
  10. Rae TD, Schmidt PJ, Pufahl RA, et al. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 1999; 284 : 805–8. [Google Scholar]
  11. Glerum DM, Shtanko A, Tzagoloff A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 1996; 271 : 14504–9. [Google Scholar]
  12. Lin SJ, Pufahl RA, Dancis A, et al. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 1997; 272 : 9215–20. [Google Scholar]
  13. Schmidt PJ, Rae TD, Pufahl RA, et al. Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J Biol Chem 1999; 274 : 23719–25. [Google Scholar]
  14. Furukawa Y, Torres AS, O’Halloran TV. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 2004; 23 : 2872–81. [Google Scholar]
  15. Sturtz LA, Diekert K, Jensen LT, et al. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, Ccs, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 2001; 276 : 38084–9. [Google Scholar]
  16. Field LS, Furukawa Y, O’Halloran, TV, Culotta VC. Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 2003; 278 : 28052–9. [Google Scholar]
  17. Cobine PA, Ojeda LD, Rigby KM, Winge DR. Yeast contains a non-proteinaceous pool of copper in the mitochondrial matrix. J Biol Chem 2004; 279 : 14447–55. [Google Scholar]
  18. Laliberté J, Whitson LJ, Beaudoin J, et al. The Schizosaccharomyces pombe Pccs protein functions in both copper trafficking and metal detoxification pathways. J Biol Chem 2004; 279 : 28744–55. [Google Scholar]
  19. Rae TD, Torres AS, Pufahl RA, O’Halloran TV. Mechanism of Cu, Zn-superoxide dismutase activation by the human metallochaperone hCCS. J Biol Chem 2001; 276 : 5166–76. [Google Scholar]
  20. Subramaniam JR, Lyons WE, Liu J, et al. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat Neurosci 2002; 5 : 301–7. [Google Scholar]
  21. Cobine PA, Pierrel F, Winge DR. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim Biophys Acta 2006; 1763 : 759–72. [Google Scholar]
  22. Horng YC, Cobine PA, Maxfield AB, et al. Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 2004; 279 : 35334–40. [Google Scholar]
  23. Leary SC, Cobine PA, Kaufman BA, et al. The human cytochrome c oxidase assembly factors Sco1 and Sco2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab 2007; 5 : 9–20. [Google Scholar]
  24. Yuan DS, Stearman R, Dancis A, et al. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci USA 1995; 92 : 2632–6. [Google Scholar]
  25. Banci L, Bertini I, Cantini F, et al. The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction. Nat Chem Biol 2006; 2 : 367–8. [Google Scholar]
  26. Rees EM, Thiele DJ. From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms. Curr Opin Microbiol 2004; 7 : 175–84. [Google Scholar]
  27. Peña MMO, Puig S, Thiele DJ. Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem 2000; 275 : 33244–51. [Google Scholar]
  28. Aller SG, Eng ET, De Feo CJ, Unger VM. Eukaryotic Ctr copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. J Biol Chem 2004; 279 : 53435–41. [Google Scholar]
  29. Cobine PA, Pierrel F, Bestwick ML, Winge DR. Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase. J Biol Chem 2006; 281 : 36552–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.