Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 3, Mars 2008
Page(s) 284 - 289
Section M/S revues
DOI https://doi.org/10.1051/medsci/2008243284
Publié en ligne 15 mars 2008
  1. Chakravarti A, Allaeys I, Poubelle PE. Neutrophil and immunity : is it innate or acquired ? Med Sci (Paris) 2007; 23 : 862–7. [Google Scholar]
  2. Gougerot-Pocidalo MA, El Benna J, My-Chan Dang P, Elbim C. Pathogens trapped in neutrophils nets. Med Sci (Paris) 2007; 23 : 464–5. [Google Scholar]
  3. Metchnikof E. Leçons sur la pathologie comparée de l’inflammation, faites à l’Institut Pasteur en avril et mai 1891. Paris : Masson, 1892. [Google Scholar]
  4. Dresch C, Faille A, Bauchet J, Najean Y. Granulopoïèse : comparaison de differentes methodes d’étude de la durée de maturation et des réserves médullaires. Nouv Rev Fr Hematol 1973; 13 : 5–22. [Google Scholar]
  5. Horwitz M, Benson KF, Person RE, et al. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 1999; 23 : 433–6. [Google Scholar]
  6. Bellanne-Chantelot C, Clauin S, Leblanc T, et al. Mutations in the ELA2 gene correlate with more severe expression of neutropenia : a study of 81 patients from the French neutropenia register. Blood 2004; 103 : 4119–25. [Google Scholar]
  7. Grenda DS, Johnson SE, Mayer JR, et al. Mice expressing a neutrophil elastase mutation derived from patients with severe congenital neutropenia have normal granulopoiesis. Blood 2002; 100 : 3221–8. [Google Scholar]
  8. Horwitz MS, Duan Z, Korkmaz B, et al. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 2007; 109 : 1817–24. [Google Scholar]
  9. Kollner I, Sodeik B, Schreek S, et al. Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood 2006; 108 : 493–500. [Google Scholar]
  10. Horwitz M, Benson KF, Duan Z, et al. Hereditary neutropenia : dogs explain human neutrophil elastase mutations. Trends Mol Med 2004; 10 : 163–70. [Google Scholar]
  11. Person RE, Li FQ, Duan Z, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 2003; 34 : 308–12. [Google Scholar]
  12. Devriendt K, Kim AS, Mathijs G, et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 2001; 27 : 313–7. [Google Scholar]
  13. Klein C, Grudzien M, Appaswamy G, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 2007; 39 : 86–92. [Google Scholar]
  14. Carlsson G, Fasth A. Infantile genetic agranulocytosis, morbus Kostmann : presentation of six cases from the original « Kostmann family » and a review. Acta Paediatr 2001; 90 : 757–64. [Google Scholar]
  15. Li FQ, Horwitz M. Characterization of mutant neutrophil elastase in severe congenital neutropenia. J Biol Chem 2001; 276 : 14230–41. [Google Scholar]
  16. Mackey MC, Aprikyan AA, Dale DC. The rate of apoptosis in post mitotic neutrophil precursors of normal and neutropenic humans. Cell Prolif 2003; 36 : 27–34. [Google Scholar]
  17. Bohn G, Allroth A, Brandes G, et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 2007; 13 : 38–45. [Google Scholar]
  18. De Saint-Basile G, Fischer A. Defective cytotoxic granule-mediated cell death pathway impairs T lymphocyte homeostasis. Curr Opin Rheumatol 2003; 15 : 436–45. [Google Scholar]
  19. Ménasché G, Ménager M, Le Deist F, et al. Defect in lytic granule exocytosis : several causes, a same effect. Med Sci (Paris) 2006; 22 : 733–8. [Google Scholar]
  20. Morley AA. A neutrophil cycle in healthy individuals. Lancet 1966; 2 : 1220–2. [Google Scholar]
  21. Bonilla MA, Gillio AP, Ruggeiro M, et al. Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N Engl J Med 1989; 320 : 1574–80. [Google Scholar]
  22. Morley A, Stohlman F Jr. Cyclophosphamide-induced cyclical neutropenia. An animal model of a human periodic disease. N Engl J Med 1970; 282 : 643–6. [Google Scholar]
  23. May RM. Simple mathematical models with very complicated dynamics. Nature 1976; 261 : 459–67. [Google Scholar]
  24. Duan Z, Person RE, Lee HH, et al. Epigenetic regulation of protein-coding and microRNA genes by the Gfi1-interacting, tumor suppressor PRDM5. Mol Cell Biol 2007; 27 : 6889–902. [Google Scholar]
  25. Donadieu J, Leblanc T, Bader-Meunier B, et al. Analysis of risk factors for myelodysplasias, leukemia and death from infection among patients with congenital neutropenia. Experience of the French severe chronic neutropenia study group. Haematologica 2005; 90 : 45–53. [Google Scholar]
  26. Germeshausen M, Ballmaier M, Welte K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis : results of a long-term survey. Blood 2007; 109 : 93–9. [Google Scholar]
  27. Sloand EM, Yong AS, Ramkissoon S, et al. Granulocyte colony-stimulating factor preferentially stimulates proliferation of monosomy 7 cells bearing the isoform IV receptor. Proc Natl Acad Sci USA 2006; 103 : 14483–8. [Google Scholar]
  28. Ferry C, Ouachee M, Leblanc T, et al. Hematopoietic stem cell transplantation in severe congenital neutropenia : experience of the French SCN register. Bone Marrow Transplant 2005; 35 : 45–50. [Google Scholar]
  29. Rosenberg PS, Alter BP, Bolyard AA, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006; 107 : 4628–35. [Google Scholar]
  30. Ridanpaa M, Sistonen P, Rockas S, et al. Worldwide mutation spectrum in cartilage-hair hypoplasia : ancient founder origin of the major70A Š G mutation of the untranslated RMRP. Eur J Hum Genet 2002; 10 : 439–47. [Google Scholar]
  31. Gorlin RJ, Gelb B, Diaz GA, et al. WHIM syndrome, an autosomal dominant disorder : clinical, hematological, and molecular studies. Am J Med Genet 2000; 91 : 368–76. [Google Scholar]
  32. Veiga-da-Cunha M, Gerin I, Chen YT, et al. The putative glucose 6-phosphate translocase gene is mutated in essentially all cases of glycogen storage disease type I non-a. Eur J Hum Genet 1999; 7 : 717–23. [Google Scholar]
  33. Barth PG, Wanders RJ, Vreken P, et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060). J Inh Metabol Dis 1999; 22 : 555–67. [Google Scholar]
  34. Boocock GR, Morrison JA, Popovic M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 2003; 33 : 97–101. [Google Scholar]
  35. Kolehmainen J, Black GC, Saarinen A, et al. Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet 2003; 72 : 1359–69. [Google Scholar]
  36. Huizing M, Scher CD, Strovel E, et al. Nonsense mutations in ADTB3A cause complete deficiency of the beta3A subunit of adaptor complex-3 and severe Hermansky-Pudlak syndrome type 2. Pediatr Res 2002; 51 : 150–8. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.