Free Access
Med Sci (Paris)
Volume 24, Number 3, Mars 2008
Page(s) 263 - 269
Section M/S revues
Published online 15 March 2008
  1. Chabry L. Contribution à l’embryologie normale et tératologique des ascidies simples. J Anat Physiol (Paris) 1887; 23 : 167–319. [Google Scholar]
  2. Conklin EG. Mosaic development in ascidian eggs. J Exp Zool 1905; 2 : 145–223. [Google Scholar]
  3. Blair JE, Hedges SB. Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 2005; 22 : 2275–84. [Google Scholar]
  4. Delsuc F, Brinkmann H, Chourrout D, et al. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006; 439 : 965–8. [Google Scholar]
  5. Dehal P, Satou Y, Campbell RK, et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 2002; 298 : 2157–67. [Google Scholar]
  6. Imai KS, Levine M, Satoh N, et al. Regulatory blueprint for a chordate embryo. Science 2006; 312 : 1183–7. [Google Scholar]
  7. Imai K, Takada N, Satoh N, et al. Beta-catenin mediates the specification of endoderm cells in ascidian embryos. Development 2000; 127 : 3009–20. [Google Scholar]
  8. Rothbächer U, Bertrand V, Lamy C, et al. A combinatorial code of maternal GATA, Ets and beta-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 2007; 134 : 4023–32. [Google Scholar]
  9. Sardet C, Prodon F, Prulière G, et al. Polarisation des œufs et des embryons : principes communs. Med Sci (Paris) 2004; 20 : 414–23. [Google Scholar]
  10. Nishida H, Sawada K. Macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 2001; 409 : 724–9. [Google Scholar]
  11. Kobayashi K, Sawada K, Yamamoto H, et al. Maternal macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme and notochord induction in ascidian embryos. Development 2003; 130 : 5179–90. [Google Scholar]
  12. Kageura H. Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis. Development 1997; 124 : 1543–51. [Google Scholar]
  13. Prodon F, Yamada L, Shirae-Kurabayashi M, et al. Postplasmic/PEM RNAs: a class of localized maternal mRNAs with multiple roles in cell polarity and development in ascidian embryos. Dev Dyn 2007; 236 : 1698–715. [Google Scholar]
  14. Negishi T, Takada T, Kawai N, et al. Localized PEM mRNA and protein are involved in cleavage-plane orientation and unequal cell divisions in ascidians. Curr Biol 2007; 17 : 1014–25. [Google Scholar]
  15. Yagi K, Satoh N, Satou Y. Identification of downstream genes of the ascidian muscle determinant gene Ci-macho1. Dev Biol 2004; 274 : 478–89. [Google Scholar]
  16. Yagi K, Takatori N, Satou Y, et al. Ci-Tbx6b and Ci-Tbx6c are key mediators of the maternal effect gene Ci-macho1 in muscle cell differentiation in Ciona intestinalis embryos. Dev Biol 2005; 282 : 535–49. [Google Scholar]
  17. Lamy C, Rothbächer U, Caillol D, et al. Ci-FoxA-a is the earliest zygotic determinant of the ascidian anterior ectoderm and directly activates Ci-sFRP1/5. Development 2006; 133 : 2835–44. [Google Scholar]
  18. Nishida, H. Specification of embryonic axis and mosaic development in ascidians. Dev Dyn 2005; 233 : 1177–93. [Google Scholar]
  19. Satou Y, Imai KS, Satoh N. Early embryonic expression of a LIM-homeobox gene Cs-lhx3 is downstream of beta-catenin and responsible for the endoderm differentiation in Ciona savignyi embryos. Development 2001; 128 : 3559–70. [Google Scholar]
  20. Kumano G, Yamaguchi S, Nishida H. Overlapping expression of FoxA and Zic confers responsiveness to FGF signaling to specify notochord in ascidian embryos. Dev Biol 2006; 300 : 770–84. [Google Scholar]
  21. Bertrand V, Hudson C, Caillol D, et al. Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 2003; 115 : 615–27. [Google Scholar]
  22. Kim GJ, Kumano G, Nishida H. Cell fate polarization in ascidian mesenchyme/muscle precursors by directed FGF signaling and role for an additional ectodermal FGF antagonizing signal in notochord/nerve cord precursors. Development 2007; 134 : 1509–18. [Google Scholar]
  23. Picco V, Hudson C, Yasuo H. Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 2007; 134 : 1491–7. [Google Scholar]
  24. Tassy O, Daian F, Hudson C, et al. A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis. Curr Biol 2006; 16 : 345–58. [Google Scholar]
  25. Imai KS, Hino K, Yagi K, et al. Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 2004; 131 : 4047–58. [Google Scholar]
  26. Miwata K, Chiba T, Horii R, et al. Systematic analysis of embryonic expression profiles of zinc finger genes in Ciona intestinalis. Dev Biol 2006; 292 : 546–54. [Google Scholar]
  27. Davidson B, Shi W, Beh J, et al. FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev 2006; 20 : 2728–38. [Google Scholar]
  28. Hudson C, Yasuo H. Patterning across the ascidian neural plate by lateral Nodal signalling sources. Development 2005; 132 : 1199–210. [Google Scholar]
  29. Pasini A, Amiel A, Rothbächer U, et al. Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. PLoS Biol 2006; 4 : e225. [Google Scholar]
  30. Matsumoto J, Kumano G, Nishida H. Direct activation by Ets and Zic is required for initial expression of the Brachyury gene in the ascidian notochord. Dev Biol 2007; 306 : 870–82. [Google Scholar]
  31. Davidson B, Christiaen L. Linking chordate gene networks to cellular behavior in ascidians. Cell 2006; 124 : 247–50. [Google Scholar]
  32. Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans. Science 2006; 311 : 796–800. [Google Scholar]
  33. Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 2007; 8 : 206–16. [Google Scholar]
  34. Cripps RM, Olson EN. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 2002; 246 : 14–28. [Google Scholar]
  35. Davidson B, Levine M. Evolutionary origins of the vertebrate heart: specification of the cardiac lineage in Ciona intestinalis. Proc Natl Acad Sci USA 2003; 100 : 11469–73. [Google Scholar]
  36. Weng W, Stemple DL. Nodal signaling and vertebrate germ layer formation. Birth Defects Res C Embryo Today 2003; 69 : 325–32. [Google Scholar]
  37. Hudson C, Yasuo H. A signalling relay involving Nodal and Delta ligands acts during secondary notochord induction in Ciona embryos. Development 2006; 133 : 2855–64. [Google Scholar]
  38. Munro EM, Odell G. Morphogenetic pattern formation during ascidian notochord formation is regulative and highly robust. Development 2002; 129 : 1–12. [Google Scholar]
  39. Delsuc F, Baurain D, Philippe H. Origine des vertébrés : la tunique fait-elle le moine ? Med Sci (Paris) 2006; 22 : 688–90. [Google Scholar]
  40. Vincent S. Mise en place de l’asymétrie droite-gauche : Notch et Nodal dans le nœud embryonnaire. Med Sci (Paris) 2003; 19 : 1188–90. [Google Scholar]
  41. Dubois L. Morphogènes et endocytose. Med Sci (Paris) 2003; 19 : 351–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.