Free Access
Med Sci (Paris)
Volume 22, Number 12, Décembre 2006
Page(s) 1053 - 1060
Section M/S revues
Published online 15 December 2006
  1. Crick FH. On protein synthesis. Symp Soc Exp Biol 1958; 12 : 138–63. [Google Scholar]
  2. Guerrier-Takada C, Gardiner K, Marsh T, et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983; 35 : 849–57. [Google Scholar]
  3. Kruger K, Grabowski PJ, Zaug AJ, et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982; 31 : 147–57. [Google Scholar]
  4. Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 2000; 289 : 905–20. [Google Scholar]
  5. Breaker RR. In vitro selection of catalytic polynucleotides. Chem Rev 1997; 97 : 371–90. [Google Scholar]
  6. Uphoff KW, Bell SD, Ellington AD. In vitro selection of aptamers: the dearth of pure reason. Curr Opin Struct Biol 1996; 6 : 281–8. [Google Scholar]
  7. Wallis MG, Schroeder R. The binding of antibiotics to RNA. Prog Biophys Mol Biol 1997; 67 : 141–54. [Google Scholar]
  8. Werstuck G, Green MR. Controlling gene expression in living cells through small molecule-RNA interactions. Science 1998; 282 : 296–8. [Google Scholar]
  9. Gold L, Brown D, He Y, et al. From oligonucleotide shapes to genomic SELEX: novel biological regulatory loops. Proc Natl Acad Sci USA 1997 : 94 ; 59–64. [Google Scholar]
  10. Gold L, Singer B, He YY, et al. SELEX and the evolution of genomes. Curr Opin Genet Dev 1997; 7 : 848–51. [Google Scholar]
  11. Gelfand MS, Mironov AA, Jomantas J, et al. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet 1999; 15 : 439–42. [Google Scholar]
  12. Nou X, Kadner RJ. Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA 2000; 97 : 7190–5. [Google Scholar]
  13. Stormo GD, Ji Y. Do mRNAs act as direct sensors of small molecules to control their expression ? Proc Natl Acad Sci USA 2001; 98 : 9465–7. [Google Scholar]
  14. Miranda-Rios J, Navarro M, Soberon M. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc Natl Acad Sci USA 2001; 98 : 9736–41. [Google Scholar]
  15. Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol 2004; 5 : 451–63. [Google Scholar]
  16. Lundrigan MD, Koster W, Kadner RJ. Transcribed sequences of the Escherichia coli btuB gene control its expression and regulation by vitamin B12. Proc Natl Acad Sci USA 1991; 88 : 1479–83. [Google Scholar]
  17. Ravnum S, Andersson DI. Vitamin B12 repression of the btuB gene in Salmonella typhimurium is mediated via a translational control which requires leader and coding sequences. Mol Microbiol 1997; 23 : 35–42. [Google Scholar]
  18. Richter-Dahlfors AA, Ravnum S, Andersson DI. Vitamin B12 repression of the cob operon in Salmonella typhimurium: translational control of the cbiA gene. Mol Microbiol 1994; 13 : 541–53. [Google Scholar]
  19. Ravnum S, Andersson DI. An adenosyl-cobalamin (coenzyme-B12)-repressed translational enhancer in the cob mRNA of Salmonella typhimurium. Mol Microbiol 2001; 39 : 1585–94. [Google Scholar]
  20. Nahvi A, Sudarsan N, Ebert MS, et al. Genetic control by a metabolite binding mRNA. Chem Biol 2002; 9 : 1043. [Google Scholar]
  21. Nahvi A, Barrick JE, Breaker RR. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 2004; 32 : 143–50. [Google Scholar]
  22. Sudarsan N, Wickiser JK, Nakamura S, et al. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 2003; 17 : 2688–97. [Google Scholar]
  23. Winkler WC, Breaker RR. Genetic control by metabolite-binding riboswitches. Chem Biochem 2003; 4 ; 1024–32. [Google Scholar]
  24. Mandal M, Breaker RR. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 2004; 11 : 29–35. [Google Scholar]
  25. Mironov AS, Gusarov I, Rafikov R, et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002; 111 : 747–56. [Google Scholar]
  26. Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 2002; 99 : 15908–13. [Google Scholar]
  27. Mandal M, Boese B, Barrick JE, et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 2003; 113 : 577–86. [Google Scholar]
  28. Winkler WC, Nahvi A, Roth A, et al. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004; 428 : 281–6. [Google Scholar]
  29. Mandal M, Lee M, Barrick JE, et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004; 306 : 275–9. [Google Scholar]
  30. Grundy FJ, Lehman SC, Henkin TM. The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci USA 2003; 100 : 12057–62. [Google Scholar]
  31. Epshtein V, Mironov AS, Nudler E. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci USA 2003; 100 : 5052–6. [Google Scholar]
  32. McDaniel BA, Grundy FJ, Artsimovitch I, et al. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc Natl Acad Sci USA 2003; 100 : 3083–8. [Google Scholar]
  33. Winkler WC, Nahvi A, Sudarsan N, et al. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 2003; 10 : 701–7. [Google Scholar]
  34. Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002; 419 : 952–6. [Google Scholar]
  35. Batey RT, Gilbert SD, Montange RK. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 2004; 432 ; 411–5. [Google Scholar]
  36. Gilbert SD, Stoddard CD, Wise SJ, et al. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J Mol Biol 2006; 359 : 754–8. [Google Scholar]
  37. Serganov A, Yuan YR, Pikovskaya O, et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol 2004; 11 : 1729–41. [Google Scholar]
  38. Wickiser JK, Cheah MT, Breaker RR, et al. The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 2005; 44 : 13404–14. [Google Scholar]
  39. Wickiser JK, Winkler WC, Breaker RR, et al. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell 2005; 18 : 49–60. [Google Scholar]
  40. Sudarsan N, Cohen-Chalamish S, Nakamura S, et al. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 2005; 12 : 1325–35. [Google Scholar]
  41. Lemay JF, Penedo JC, Tremblay R, et al. Folding of the adenine riboswitch. Chem Biol 2006; 13 : 857–68. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.