Free Access
Issue
Med Sci (Paris)
Volume 22, Number 12, Décembre 2006
Page(s) 1061 - 1068
Section M/S revues
DOI https://doi.org/10.1051/medsci/200622121061
Published online 15 December 2006
  1. Campion D. Dissection génétique des maladies à hérédité complexe. Med Sci (Paris) 2001; 17 : 1139–48. [Google Scholar]
  2. Lander ES. The new genomics: global views of biology. Science 1996; 274 : 536–9. [Google Scholar]
  3. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33 : 177–82. [Google Scholar]
  4. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001; 27 : 234–6. [Google Scholar]
  5. Nordborg M, Tavare S. Linkage disequilibrium: what history has to tell us. Trends Genet 2002; 18 : 83–90. [Google Scholar]
  6. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999; 22 : 139–44. [Google Scholar]
  7. Daly MJ, Rioux JD, Schaffner SF, et al. High-resolution haplotype structure in the human genome. Nat Genet 2001; 29 : 229–32. [Google Scholar]
  8. Johnson GC, Esposito L, Barratt BJ, et al. Haplotype tagging for the identification of common disease genes. Nat Genet 2001; 29 : 233–7. [Google Scholar]
  9. Patil N, Berno AJ, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294 : 1719–23. [Google Scholar]
  10. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002; 296 : 2225–9. [Google Scholar]
  11. Integrating ethics and science in the International HapMap Project. Nat Rev Genet 2004; 5 : 467–75. [Google Scholar]
  12. Altshuler D, Brooks LD, Chakravarti A, et al. A haplotype map of the human genome. Nature 2005; 437 : 1299–320. [Google Scholar]
  13. Hinds DA, Stuve LL, Nilsen GB, et al. Whole-genome patterns of common DNA variation in three human populations. Science 2005; 307 : 1072–9. [Google Scholar]
  14. Ke X, Hunt S, Tapper W, et al. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum Mol Genet 2004; 13 : 577–88. [Google Scholar]
  15. Tapper W, Collins A, Gibson J, et al. A map of the human genome in linkage disequilibrium units. Proc Natl Acad Sci USA 2005; 102 : 11835–9. [Google Scholar]
  16. McVean GA, Myers SR, Hunt S, et al. The fine-scale structure of recombination rate variation in the human genome. Science 2004; 304 : 581–4. [Google Scholar]
  17. Myers S, Bottolo L, Freeman C, et al. A fine-scale map of recombination rates and hotspots across the human genome. Science 2005; 310 : 321–4. [Google Scholar]
  18. Winckler W, Myers SR, Richter DJ, et al. Comparison of fine-scale recombination rates in humans and chimpanzees. Science 2005; 308 : 107–11 [Google Scholar]
  19. Jeffreys AJ, Neumann R, Panayi M, et al. Human recombination hot spots hidden in regions of strong marker association. Nat Genet 2005; 37 : 601–6. [Google Scholar]
  20. Ardlie K, Liu-Cordero SN, Eberle MA, et al. Lower-than-expected linkage disequilibrium between tightly linked markers in humans suggests a role for gene conversion. Am J Hum Genet 2001; 69 : 582–9. [Google Scholar]
  21. Jeffreys AJ, May CA. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 2004; 36 : 151–6. [Google Scholar]
  22. Wiltshire S, De Bakker PI, Daly MJ. The value of gene-based selection of tag SNPs in genome-wide association studies. Eur J Hum Genet 2006; 14 : 1209–14. [Google Scholar]
  23. Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38 : 209–13. [Google Scholar]
  24. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6 : 95–108. [Google Scholar]
  25. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 2005; 6 : 109–18. [Google Scholar]
  26. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308 : 385–9. [Google Scholar]
  27. Mueller JC, Lohmussaar E, Magi R, et al. Linkage disequilibrium patterns and tagSNP transferability among European populations. Am J Hum Genet 2005; 76 : 387–98. [Google Scholar]
  28. Evans DM, Cardon LR. A comparison of linkage disequilibrium patterns and estimated population recombination rates across multiple populations. Am J Hum Genet 2005; 76 : 681–7. [Google Scholar]
  29. Willer CJ, Scott LJ, Bonnycastle LL, et al. Tag SNP selection for Finnish individuals based on the CEPH Utah HapMap database. Genet Epidemiol 2006; 30 : 180–90. [Google Scholar]
  30. Ke X, Durrant C, Morris AP, et al. Efficiency and consistency of haplotype tagging of dense SNP maps in multiple samples. Hum Mol Genet 2004; 13 : 2557–65. [Google Scholar]
  31. Montpetit A, Nelis M, Laflamme P, et al. An evaluation of the performance of Tag SNPs derived from HapMap in a Caucasian population. PLoS Genet 2006; 2 : e27. [Google Scholar]
  32. Zeggini E, Rayner W, Morris AP, et al. An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet 2005; 37 : 1320–2. [Google Scholar]
  33. Syvanen AC. Toward genome-wide SNP genotyping. Nat Genet 2005; 37 (suppl) : S5–10. [Google Scholar]
  34. Rioux JD, Daly MJ, Silverberg MS, et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29 : 223–8. [Google Scholar]
  35. Begovich AB, Carlton VE, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75 : 330–7. [Google Scholar]
  36. Laitinen T, Polvi A, Rydman P, et al. Characterization of a common susceptibility locus for asthma-related traits. Science 2004; 304 : 300–4. [Google Scholar]
  37. Van Eerdewegh P, Little RD, Dupuis J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002; 418 : 426–30. [Google Scholar]
  38. Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998; 20 : 284–7. [Google Scholar]
  39. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 1993; 90 : 1977–81. [Google Scholar]
  40. Stefansson H, Sigurdsson E, Steinthorsdottir V, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71 : 877–92. [Google Scholar]
  41. Mira MT, Alcais A, Nguyen VT, et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 2004; 427 : 636–40. [Google Scholar]
  42. Helgadottir A, Manolescu A, Thorleifsson G, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 2004; 36 : 233–9. [Google Scholar]
  43. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304 : 1497–500. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.