Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 12, Décembre 2006
Page(s) 1061 - 1068
Section M/S revues
DOI https://doi.org/10.1051/medsci/200622121061
Publié en ligne 15 décembre 2006
  1. Campion D. Dissection génétique des maladies à hérédité complexe. Med Sci (Paris) 2001; 17 : 1139–48. [Google Scholar]
  2. Lander ES. The new genomics: global views of biology. Science 1996; 274 : 536–9. [Google Scholar]
  3. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33 : 177–82. [Google Scholar]
  4. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001; 27 : 234–6. [Google Scholar]
  5. Nordborg M, Tavare S. Linkage disequilibrium: what history has to tell us. Trends Genet 2002; 18 : 83–90. [Google Scholar]
  6. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999; 22 : 139–44. [Google Scholar]
  7. Daly MJ, Rioux JD, Schaffner SF, et al. High-resolution haplotype structure in the human genome. Nat Genet 2001; 29 : 229–32. [Google Scholar]
  8. Johnson GC, Esposito L, Barratt BJ, et al. Haplotype tagging for the identification of common disease genes. Nat Genet 2001; 29 : 233–7. [Google Scholar]
  9. Patil N, Berno AJ, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294 : 1719–23. [Google Scholar]
  10. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002; 296 : 2225–9. [Google Scholar]
  11. Integrating ethics and science in the International HapMap Project. Nat Rev Genet 2004; 5 : 467–75. [Google Scholar]
  12. Altshuler D, Brooks LD, Chakravarti A, et al. A haplotype map of the human genome. Nature 2005; 437 : 1299–320. [Google Scholar]
  13. Hinds DA, Stuve LL, Nilsen GB, et al. Whole-genome patterns of common DNA variation in three human populations. Science 2005; 307 : 1072–9. [Google Scholar]
  14. Ke X, Hunt S, Tapper W, et al. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum Mol Genet 2004; 13 : 577–88. [Google Scholar]
  15. Tapper W, Collins A, Gibson J, et al. A map of the human genome in linkage disequilibrium units. Proc Natl Acad Sci USA 2005; 102 : 11835–9. [Google Scholar]
  16. McVean GA, Myers SR, Hunt S, et al. The fine-scale structure of recombination rate variation in the human genome. Science 2004; 304 : 581–4. [Google Scholar]
  17. Myers S, Bottolo L, Freeman C, et al. A fine-scale map of recombination rates and hotspots across the human genome. Science 2005; 310 : 321–4. [Google Scholar]
  18. Winckler W, Myers SR, Richter DJ, et al. Comparison of fine-scale recombination rates in humans and chimpanzees. Science 2005; 308 : 107–11 [Google Scholar]
  19. Jeffreys AJ, Neumann R, Panayi M, et al. Human recombination hot spots hidden in regions of strong marker association. Nat Genet 2005; 37 : 601–6. [Google Scholar]
  20. Ardlie K, Liu-Cordero SN, Eberle MA, et al. Lower-than-expected linkage disequilibrium between tightly linked markers in humans suggests a role for gene conversion. Am J Hum Genet 2001; 69 : 582–9. [Google Scholar]
  21. Jeffreys AJ, May CA. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 2004; 36 : 151–6. [Google Scholar]
  22. Wiltshire S, De Bakker PI, Daly MJ. The value of gene-based selection of tag SNPs in genome-wide association studies. Eur J Hum Genet 2006; 14 : 1209–14. [Google Scholar]
  23. Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38 : 209–13. [Google Scholar]
  24. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6 : 95–108. [Google Scholar]
  25. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 2005; 6 : 109–18. [Google Scholar]
  26. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308 : 385–9. [Google Scholar]
  27. Mueller JC, Lohmussaar E, Magi R, et al. Linkage disequilibrium patterns and tagSNP transferability among European populations. Am J Hum Genet 2005; 76 : 387–98. [Google Scholar]
  28. Evans DM, Cardon LR. A comparison of linkage disequilibrium patterns and estimated population recombination rates across multiple populations. Am J Hum Genet 2005; 76 : 681–7. [Google Scholar]
  29. Willer CJ, Scott LJ, Bonnycastle LL, et al. Tag SNP selection for Finnish individuals based on the CEPH Utah HapMap database. Genet Epidemiol 2006; 30 : 180–90. [Google Scholar]
  30. Ke X, Durrant C, Morris AP, et al. Efficiency and consistency of haplotype tagging of dense SNP maps in multiple samples. Hum Mol Genet 2004; 13 : 2557–65. [Google Scholar]
  31. Montpetit A, Nelis M, Laflamme P, et al. An evaluation of the performance of Tag SNPs derived from HapMap in a Caucasian population. PLoS Genet 2006; 2 : e27. [Google Scholar]
  32. Zeggini E, Rayner W, Morris AP, et al. An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet 2005; 37 : 1320–2. [Google Scholar]
  33. Syvanen AC. Toward genome-wide SNP genotyping. Nat Genet 2005; 37 (suppl) : S5–10. [Google Scholar]
  34. Rioux JD, Daly MJ, Silverberg MS, et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29 : 223–8. [Google Scholar]
  35. Begovich AB, Carlton VE, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75 : 330–7. [Google Scholar]
  36. Laitinen T, Polvi A, Rydman P, et al. Characterization of a common susceptibility locus for asthma-related traits. Science 2004; 304 : 300–4. [Google Scholar]
  37. Van Eerdewegh P, Little RD, Dupuis J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002; 418 : 426–30. [Google Scholar]
  38. Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998; 20 : 284–7. [Google Scholar]
  39. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 1993; 90 : 1977–81. [Google Scholar]
  40. Stefansson H, Sigurdsson E, Steinthorsdottir V, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71 : 877–92. [Google Scholar]
  41. Mira MT, Alcais A, Nguyen VT, et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 2004; 427 : 636–40. [Google Scholar]
  42. Helgadottir A, Manolescu A, Thorleifsson G, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 2004; 36 : 233–9. [Google Scholar]
  43. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304 : 1497–500. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.