Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 12, Décembre 2006
Page(s) 1053 - 1060
Section M/S revues
DOI https://doi.org/10.1051/medsci/200622121053
Publié en ligne 15 décembre 2006
  1. Crick FH. On protein synthesis. Symp Soc Exp Biol 1958; 12 : 138–63. [Google Scholar]
  2. Guerrier-Takada C, Gardiner K, Marsh T, et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983; 35 : 849–57. [Google Scholar]
  3. Kruger K, Grabowski PJ, Zaug AJ, et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982; 31 : 147–57. [Google Scholar]
  4. Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 2000; 289 : 905–20. [Google Scholar]
  5. Breaker RR. In vitro selection of catalytic polynucleotides. Chem Rev 1997; 97 : 371–90. [Google Scholar]
  6. Uphoff KW, Bell SD, Ellington AD. In vitro selection of aptamers: the dearth of pure reason. Curr Opin Struct Biol 1996; 6 : 281–8. [Google Scholar]
  7. Wallis MG, Schroeder R. The binding of antibiotics to RNA. Prog Biophys Mol Biol 1997; 67 : 141–54. [Google Scholar]
  8. Werstuck G, Green MR. Controlling gene expression in living cells through small molecule-RNA interactions. Science 1998; 282 : 296–8. [Google Scholar]
  9. Gold L, Brown D, He Y, et al. From oligonucleotide shapes to genomic SELEX: novel biological regulatory loops. Proc Natl Acad Sci USA 1997 : 94 ; 59–64. [Google Scholar]
  10. Gold L, Singer B, He YY, et al. SELEX and the evolution of genomes. Curr Opin Genet Dev 1997; 7 : 848–51. [Google Scholar]
  11. Gelfand MS, Mironov AA, Jomantas J, et al. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet 1999; 15 : 439–42. [Google Scholar]
  12. Nou X, Kadner RJ. Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA 2000; 97 : 7190–5. [Google Scholar]
  13. Stormo GD, Ji Y. Do mRNAs act as direct sensors of small molecules to control their expression ? Proc Natl Acad Sci USA 2001; 98 : 9465–7. [Google Scholar]
  14. Miranda-Rios J, Navarro M, Soberon M. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc Natl Acad Sci USA 2001; 98 : 9736–41. [Google Scholar]
  15. Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol 2004; 5 : 451–63. [Google Scholar]
  16. Lundrigan MD, Koster W, Kadner RJ. Transcribed sequences of the Escherichia coli btuB gene control its expression and regulation by vitamin B12. Proc Natl Acad Sci USA 1991; 88 : 1479–83. [Google Scholar]
  17. Ravnum S, Andersson DI. Vitamin B12 repression of the btuB gene in Salmonella typhimurium is mediated via a translational control which requires leader and coding sequences. Mol Microbiol 1997; 23 : 35–42. [Google Scholar]
  18. Richter-Dahlfors AA, Ravnum S, Andersson DI. Vitamin B12 repression of the cob operon in Salmonella typhimurium: translational control of the cbiA gene. Mol Microbiol 1994; 13 : 541–53. [Google Scholar]
  19. Ravnum S, Andersson DI. An adenosyl-cobalamin (coenzyme-B12)-repressed translational enhancer in the cob mRNA of Salmonella typhimurium. Mol Microbiol 2001; 39 : 1585–94. [Google Scholar]
  20. Nahvi A, Sudarsan N, Ebert MS, et al. Genetic control by a metabolite binding mRNA. Chem Biol 2002; 9 : 1043. [Google Scholar]
  21. Nahvi A, Barrick JE, Breaker RR. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 2004; 32 : 143–50. [Google Scholar]
  22. Sudarsan N, Wickiser JK, Nakamura S, et al. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 2003; 17 : 2688–97. [Google Scholar]
  23. Winkler WC, Breaker RR. Genetic control by metabolite-binding riboswitches. Chem Biochem 2003; 4 ; 1024–32. [Google Scholar]
  24. Mandal M, Breaker RR. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 2004; 11 : 29–35. [Google Scholar]
  25. Mironov AS, Gusarov I, Rafikov R, et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002; 111 : 747–56. [Google Scholar]
  26. Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 2002; 99 : 15908–13. [Google Scholar]
  27. Mandal M, Boese B, Barrick JE, et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 2003; 113 : 577–86. [Google Scholar]
  28. Winkler WC, Nahvi A, Roth A, et al. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004; 428 : 281–6. [Google Scholar]
  29. Mandal M, Lee M, Barrick JE, et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004; 306 : 275–9. [Google Scholar]
  30. Grundy FJ, Lehman SC, Henkin TM. The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci USA 2003; 100 : 12057–62. [Google Scholar]
  31. Epshtein V, Mironov AS, Nudler E. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci USA 2003; 100 : 5052–6. [Google Scholar]
  32. McDaniel BA, Grundy FJ, Artsimovitch I, et al. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc Natl Acad Sci USA 2003; 100 : 3083–8. [Google Scholar]
  33. Winkler WC, Nahvi A, Sudarsan N, et al. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 2003; 10 : 701–7. [Google Scholar]
  34. Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002; 419 : 952–6. [Google Scholar]
  35. Batey RT, Gilbert SD, Montange RK. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 2004; 432 ; 411–5. [Google Scholar]
  36. Gilbert SD, Stoddard CD, Wise SJ, et al. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J Mol Biol 2006; 359 : 754–8. [Google Scholar]
  37. Serganov A, Yuan YR, Pikovskaya O, et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol 2004; 11 : 1729–41. [Google Scholar]
  38. Wickiser JK, Cheah MT, Breaker RR, et al. The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 2005; 44 : 13404–14. [Google Scholar]
  39. Wickiser JK, Winkler WC, Breaker RR, et al. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell 2005; 18 : 49–60. [Google Scholar]
  40. Sudarsan N, Cohen-Chalamish S, Nakamura S, et al. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 2005; 12 : 1325–35. [Google Scholar]
  41. Lemay JF, Penedo JC, Tremblay R, et al. Folding of the adenine riboswitch. Chem Biol 2006; 13 : 857–68. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.