Free Access
Issue
Med Sci (Paris)
Volume 22, Number 5, Mai 2006
Page(s) 502 - 506
Section M/S revues
DOI https://doi.org/10.1051/medsci/2006225502
Published online 15 May 2006
  1. Pääbo S. Molecular cloning of ancient Egyptian mummy DNA. Nature 1985; 314 : 644–5. [Google Scholar]
  2. Higuchi RG, Bowman B, Freiberger M, et al. DNA sequences from the quagga, an extinct member of the horse family. Nature 1984; 312 : 282–4. [Google Scholar]
  3. Golenberg EM, Giannasi DE, Clegg MT, et al. Chloroplast DNA sequence from a Miocene Magnolia species. Nature 1990; 344 : 656–8. [Google Scholar]
  4. Cano RJ, Poinar HN, Pieniazek NJ, et al. Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature 1993; 363 : 536–8. [Google Scholar]
  5. Woodward SR, Weyand NJ, Bunnel M. DNA sequence from cretaceous period bone fragments. Science 1994; 266 : 1229–32. [Google Scholar]
  6. Gutierrez G, Marin A. 1998. The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Mol Biol Evol 15 : 926–9. [Google Scholar]
  7. Austin JJ, Ross AJ, Smith AB, et al. 1997. Problems of reproducibility : does geologically ancient DNA survive in amber-preserved insects ? Proc R Soc B 1997; 264 : 467–74 [Google Scholar]
  8. Hedges SB, Schweitzer MH. Detecting dinosaur DNA. Science 1995; 268 : 1191–2 [Google Scholar]
  9. Austin JJ, Smith AB, Thomas RH. 1997. Palaeontology in a molecular world : the search for authentic ancient DNA. TREE 12 : 303–306 [Google Scholar]
  10. Willerslev E et Cooper A. Ancient DNA. Proc R Soc B 2005; 272 : 3–16. [Google Scholar]
  11. Hagelberg E, Thomas MG, Cook Jr CE, et al. DNA from ancient mammoth bones. Nature 1994; 370 : 333–4. [Google Scholar]
  12. Ozawa T, Hayashi S, Mikhelson VM. Phylogenetic position of mammoth and Steller’s sea cow within Tethytheria demonstrated by mitochondrial DNA sequences. J Mol Evol 1997; 44 : 406–13. [Google Scholar]
  13. Noro M, Masuda R, Dubrovo IA, et al. Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal genes. J Mol Evol 1998; 46 : 314–26. [Google Scholar]
  14. Derenko M, Malyarchuk B, Shields GFG. Mitochondrial cytochrome b sequence from a 33000 year-old woolly mammoth (Mammuthus primigenius). Ancient Biomolecules 1997; 1 : 149–53. [Google Scholar]
  15. Barriel V, Thuet E, Tassy P. Molecular phylogeny of Elephantidae. Extreme divergence of the extant forest african elephant. CR Acad Sci Paris Ser III 1999; 322 : 447–54. [Google Scholar]
  16. Debruyne R, Barriel V, Tassy P. Mitochondrial cytochrome b of Lyakhov mammoth (Proboscidea, Mammalia) : new data and phylogenetic analyses of Elephantidae. Mol Phylogenet Evol 2003; 26 : 421–34. [Google Scholar]
  17. Krause J, Dear PH, Pollack JL, et al. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature 2006; 439 : 724–7. [Google Scholar]
  18. Pineau P, Henry M, Suspène R, et al. PCR amplification from all Metazoan species with a universal primer set from nuclear gene HIST2H4. Mol Biol Evol 2004; 22 : 582–8. [Google Scholar]
  19. Krajewski C, Buckley L, Westerman M. 1997. DNA phylogeny of the marsupial wolf resolved. Proc R Soc B 264 : 911–7. [Google Scholar]
  20. Poinar HN, Schwarz C, Qi J, Shapiro B, et al. Metagenomics to paleogenomics : large-scale sequencing of mammoth DNA. Science 2006; 311 : 392–4. [Google Scholar]
  21. Cooper A, Mourer-Chauviré C, Chambers GK, et al. Independent origins of New Zealand moas and kiwis. Proc Natl Acad Sci USA 1992; 89 : 8741–4. [Google Scholar]
  22. Cooper A, Lalueza-Fox C, Anderson S, et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 2001; 409 : 704–7. [Google Scholar]
  23. Shapiro B, Drummond AJ, Rambaut A, et al. Rise and fall of the Beringian steppe bison. Science 2004; 306 : 1561–5. [Google Scholar]
  24. Barnes I, Matheus P, Shapiro B, et al. Dynamics of pleistocene population extinctions in Beringian brown bears. Science 2002; 295 : 2267–70. [Google Scholar]
  25. Lambert DM, Ritchie PA, Millar CD, et al. Rates of evolution in ancient DNA from Adélie Penguins. Science 2002; 295 : 2270–3 [Google Scholar]
  26. Baker AJ, Huynen LJ, Haddrath O, et al. Reconstructing the tempo and mode of evolution in an extinct clade of birds with ancient DNA : the giant moas of New Zealand. Proc Natl Acad Sci USA 2005; 102 : 8257–62. [Google Scholar]
  27. Larson G, Dobney K, Albarella, et al. Worlwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 2005; 307 : 1618–21. [Google Scholar]
  28. Weinstock J, Willerslev E, Sher A et al. Evolution, systematics, and phylogeography of pleistocene horses in the New World : a molecular perspective. PLoS Biol 2005; 3 : e241. [Google Scholar]
  29. Ho SYW, Phillips MJ, Cooper A, Drummond AJ. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 2005; 22 : 1561–8. [Google Scholar]
  30. Jaenicke-Després V, Buckler ES, Smith BD, et al. Early allelic selection in maize as revealed by ancient DNA. Science 2003; 302 : 1206–8. [Google Scholar]
  31. Penny D. Evolutionary biology : relativity for molecular clocks. Nature 2005; 436 : 183–4. [Google Scholar]
  32. Excoffier L. Ce que nous dit la généalogie des gènes. La Recherche 1997; 302 : 82–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.