Free Access
Med Sci (Paris)
Volume 22, Number 5, Mai 2006
Page(s) 493 - 501
Section M/S revues
Published online 15 May 2006
  1. Baguna J, Riutort M. The dawn of bilaterian animals : the case of acoelomorph flatworms. Bioessays 2004; 26 : 1046–57 [Google Scholar]
  2. Minelli A, Fusco G. Evo-devo perspectives on segmentation : model organisms and beyond. Trends Ecol Evol 2004; 19 : 423–29. [Google Scholar]
  3. Davis GK, Patel NH. Short, long and beyond : molecular and embryological approaches to insect segmentation. Ann Rev Entomol 2002; 47 : 669–99. [Google Scholar]
  4. Schulz C, Schroder R, Hausdorf B, et al. A caudal homologue in the short germ band beetle Tribolium shows similarities to both the Drosophila and the vertebrate caudal expression patterns. Dev Genes Evol 1998; 208 : 283–89. [Google Scholar]
  5. Schroder R, Eckert C, Wolff C, Tautz D. Conserved and divergent aspects of terminal patterning in the beetle Tribolium castaneum. Proc Natl Acad Sci USA 2000; 97 : 6591–6. [Google Scholar]
  6. Hughes CL, Kaufman TC. Hox genes and the evolution of the arthropod body plan. Evol Dev 2002; 4 : 459–99. [Google Scholar]
  7. Copf T, Rabet N, Celniker S, Averof M. Posterior patterning genes and identification of a unique body region in the brine shrimp Artemia franciscana. Development 2004; 130 : 5915–27. [Google Scholar]
  8. Grassé PP. Traité de zoologie : anatomie, systématique, biologie. Crustacés, tome VII, fascicule I. Paris : Masson, 1994 : 918 p. [Google Scholar]
  9. Grassé PP. Traité de zoologie : anatomie, systématique, biologie. Chélicérates, tome VI, fascicule I. Paris : Masson, 1949 : 980 p. [Google Scholar]
  10. Damen WGM, Tautz D. A Hox class 3 orthologue from the spider Cupiennius salei is expressed in a Hox-gene like fashion. Dev Genes Evol 1998; 208 : 586–90. [Google Scholar]
  11. Simonnet F, Deutsch J, Queinnec E. Hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol 2004; 214 : 537–45 [Google Scholar]
  12. Kanki JP, Ho RK. The development of the posterior body in zebrafish. Development, 1997; 124 : 881–93. [Google Scholar]
  13. Keller R. The origin and morphogenesis of amphibian somites. Curr Top Dev Biol 2000; 47 : 183–246 [Google Scholar]
  14. Pourquie O. Vertebrate somitogenesis. Annu Rev Cell Dev Bi 2001; 17 : 311–50. [Google Scholar]
  15. Davis RL, Kirschner MW. The fate of cells in the tailbud of Xenopus laevis. Development 2000; 127 : 255–67 [Google Scholar]
  16. Aulehla A, Wehrle C, Brand-Saberi B, et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 2003; 4 : 395–406 [Google Scholar]
  17. Wedeen CJ. Regionalization and segmentation in the leech. J Neurol 1995; 27 : 277–93. [Google Scholar]
  18. Shimizu T, Nakamoto A. Segmentation in annelids : cellular and molecular basis for metameric body plan. Zoo Sci 2001; 18 : 285–98 [Google Scholar]
  19. Gauchat D, Mazet F, Berne YC, et al. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc Natl Acad Sci USA 2000; 97 : 4493–8. [Google Scholar]
  20. Dearden PK, Akam M. Early embryo patterning in the grasshopper Schistocerca gregaria : wingless, decapentaplegic and caudal expression. Development 2001; 128 : 3435–44. [Google Scholar]
  21. Chipman AD, Arthur W, Akam M. Early development and segment formation in the centipede, Strigamia maritima (Geophilomorpha). Evol Dev 2004; 6 : 78–89. [Google Scholar]
  22. Marom K, Shapira E, Fainsod A. The chicken caudal genes establish an anterior-posterior gradient by partially overlapping temporal and spatial patterns of expression. Mech Develop 1997; 64 : 41–52. [Google Scholar]
  23. Sommer RJ, Tautz D. Involvement of an orthologue of the Drosophila pair-rule gene hairy in segment formation of the short germ-band embryo of Tribolium (Coleoptera). Nature 1993; 361 : 448–50. [Google Scholar]
  24. Tautz D. Segmentation. Dev Cell 2004; 7 : 301–12. [Google Scholar]
  25. Damen WGM. Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 2002; 129 : 1239–50. [Google Scholar]
  26. Muller M, von Weizsacker E, Campos Ortega JA. Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites. Development 1996; 122 : 2071–8. [Google Scholar]
  27. Prud’homme B, de Rosa R, Arendt D, et al. Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr Biol 2003; 13 : 1876–81. [Google Scholar]
  28. Kang D, Huang FZ, Li D, et al. A hedgehog homolog regulates gut formation in leech (Helobdella). Dev Biol 2001; 235 : 1645–57. [Google Scholar]
  29. Miyawaki K, Mito T, Sarashina I, et al. Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Develop 2004; 121 : 119–30. [Google Scholar]
  30. Janssen R, Prpic NM, Damen WGM. Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda : Diplopoda). Dev Biol 2004; 268 : 89–104. [Google Scholar]
  31. Shimeld SM. The evolution of the hedgehog gene family in chordates : insights from amphioxus hedgehog. Dev Genes Evol 1999; 209 : 40–7. [Google Scholar]
  32. Takatori N, Satou Y, Satoh N. Expression of hedgehog genes in Ciona intestinalis embryos. Mech Develop 2002; 116 : 235–8. [Google Scholar]
  33. Irvine SQ, Martindale MQ. Expression patterns of anterior Hox genes in the polychaete Chaetopterus : correlation with morphological boundaries. Dev Biol 2000; 217 : 333–51. [Google Scholar]
  34. Hemmati-Brivanlou A. Nervous system morphogenesis in vertebrates. Med Sci (Paris) 2000; 16 : 150–8. [Google Scholar]
  35. Burke AC, Nelson CE, Morgan BA, Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development 1995, 121 : 333–46. [Google Scholar]
  36. Jiang YJ, Smithers L, Lewis J. Vertebrate segmentation : the clock is linked to Notch signalling. Curr Biol 1998; 8 : 868–71. [Google Scholar]
  37. Stollewerk A, Schoppmeier M, Damen WGM. Involvement of Notch and Delta genes in spider segmentation. Nature 2003; 423 : 863–65. [Google Scholar]
  38. Nulsen C, Nagy LM. The role of wingless in the development of multibranched crustacean limbs. Dev Genes Evol 1999; 209 : 340–48. [Google Scholar]
  39. Rivera AS, Gonsalves FC, Song MH, et al. Characterization of Notch-class gene expression in segmentation stem cells and segment founder cells in Helobdella robusta (Lophotrochozoa; Annelida ; Clitellata ; Hirudina ; Glossiphoniidae). Evol Dev 2005; 7 : 588–99 [Google Scholar]
  40. Hughes NC, Jacobs DK. The end of everything : metazoan terminal addition. Evol Dev 2005; 7 : 497 [Google Scholar]
  41. Chen JY, Bottjer DJ, Oliveri P, et al. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 2004; 305 : 218–22. [Google Scholar]
  42. Arenas-Mena C, Cameron AR, Davidson EH. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 2000; 127 : 4631–3 [Google Scholar]
  43. Mooi R, David B, Wray AG. Arrays in rays : terminal addition in echinoderms and its correlation with gene expression. Evol Dev 2005; 7 : 542–55 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.