Free Access
Issue
Med Sci (Paris)
Volume 22, Number 5, Mai 2006
Page(s) 507 - 513
Section M/S revues
DOI https://doi.org/10.1051/medsci/2006225507
Published online 15 May 2006
  1. Mathews MB, Sonenberg N, Hershey JWB. Origins and principles of translational control. In : Hershey JWB, Mathews MB, Sonenberg N, eds. Translational control of gene expression. Cold Spring Harbor, New York : Cold Spring Harbor Laboratory Press : 2000 : 1–31. [Google Scholar]
  2. Cormier P. Translational factors: from protein synthesis to cell cycle regulation and tumorigenesis. Med Sci (Paris) 2000; 16 : 378–85. [Google Scholar]
  3. Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68 : 913–63. [Google Scholar]
  4. Cormier P, Pyronnet S, Salaun P, et al. Cap-dependent translation and control of the cell cycle. In : Meijer L, Jezequel A. Roberge M, eds. Progress in cell cycle research. Roscoff : Éditions Life in Progress, 2003; 5 : 469–75. [Google Scholar]
  5. Mamane Y, Petroulakis E, Rong L, et al. eIF4E-from translation to transformation. Oncogene 2004; 23 : 3172–9. [Google Scholar]
  6. Klein PS, Melton DA. Induction of mesoderm in Xenopus laevis embryos by translation initiation factor 4E. Science 1994; 265 : 803–6. [Google Scholar]
  7. Amiri A, Keiper BD, Kawasaki I, et al. An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C. elegans. Development 2001; 128 : 3899–912. [Google Scholar]
  8. Cormier P, Pyronnet S, Morales J, et al. eIF4E association with 4E-BP decreases rapidly following fertilization in sea urchin. Dev Biol 2001; 232 : 275–83. [Google Scholar]
  9. Robalino J, Joshi B, Fahrenkrug SC, Jagus R. Two zebrafish eIF4E family members are expressed and functionally divergent. J Biol Chem 2004; 279 : 10532–41. [Google Scholar]
  10. Varani G. A cap for all occasions. Structure 1997; 5 : 855–8. [Google Scholar]
  11. Von Der Haar T, Gross JD, Wagner G, Mc Carthy JE. The mRNA cap binding protein eIF4E in post transcriptional gene expression. Nat Struct Mol Biol 2004; 11 : 503–11. [Google Scholar]
  12. Kahvejian A, Svitkin YV, Sukarieh R, et al. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 2005; 19 : 104–13. [Google Scholar]
  13. Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988; 334 : 320–5. [Google Scholar]
  14. Vagner S, Galy B, Pyronnet S. Irresistible IRES. Attracting the translational machinery to internal ribosome entry sites. EMBO Rep 2001; 2 : 893–8. [Google Scholar]
  15. Le Breton M, Cormier P, Belle R, et al. Translational control during mitosis. Biochimie 2005; 87 : 805–11. [Google Scholar]
  16. Ye X, Fong P, Iizuka N, et al. Ultrabithorax and Antennapedia 5’untranslated regions promote developmentally regulated internal translation initiation. Mol Cell Biol 1997; 17 : 1714–21. [Google Scholar]
  17. Bernal A, Kimbrell DA. Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. Proc Natl Acad Sci USA 2000; 97 : 6019–24. [Google Scholar]
  18. Salaün P, Pyronnet S, Morales J, et al. eIF4E/4E-BP dissociation and 4E-BP degradation in the first mitotic division of the sea urchin embryo. Dev Biol 2003; 255 : 428–39. [Google Scholar]
  19. Morley SM, Coldwell MJ, Clemens MJ. Initiation factor modifications in the preapoptotic phase. Cell Death Diff 2005; 12 : 571–84. [Google Scholar]
  20. Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 2004; 23 : 3180–8. [Google Scholar]
  21. Salaun P, Boulben S, Mulner-Lorillon O, et al. Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos. J Cell Sci 2005; 118 : 1385–94. [Google Scholar]
  22. Dostie J, Ferraiuolo M, Pause SA, Sonenberg N. A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5’ cap-binding protein, eIF4E. EMBO J 2000; 19 : 3142–56. [Google Scholar]
  23. Gamberi C, Peterson DS, Gottlieb E. An anterior function for the Drosophila posterior determinant Pumilio. Development 2002; 129 : 2699–710. [Google Scholar]
  24. Evans TC, Crittenden SL, Kodoyianni V, Kimble J. Translational control of maternal glp-1 mRNA establishes an asymetry in the C. elegans embryo. Cell 1994; 77 : 183–94. [Google Scholar]
  25. Priess JR, Schnabel H, Schnabel R. The glp-1 locus and cellular interaction in early C. elegans embryos. Cell 1987; 51 : 601–11. [Google Scholar]
  26. Richter JD. Cytoplasmic polyadenylation in development and beyond. Microbiol Mol Biol Rev 1999; 63 : 446–56. [Google Scholar]
  27. Barnard D, Cao Q, Richter JD. Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol Cell Biol 2005; 25 : 7605–15. [Google Scholar]
  28. Nakamura A, Sato K, Hanyu-Nakurama K. Drosophila Cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA in oogenesis. Dev Cell 2004; 6 : 69–78. [Google Scholar]
  29. Wilhelm JE, Smibert CA. Mechanisms of translational regulation in Drosophila. Biol Cell 2005; 97 : 235–52. [Google Scholar]
  30. Forrest KM, Clark IE, Jain RA, Gavis ER. Temporal complexity within a translational control element in the nanos mRNA. Development 2004; 131 : 5849–57. [Google Scholar]
  31. Nelson M, Leidal AM, Smibert CA. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J 2004; 23 : 150–9. [Google Scholar]
  32. Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 2001; 35 : 365- 406. [Google Scholar]
  33. Niessing D, Blanke S, Jackle H. Bicoid associates with the 5’-cap-bound complex of caudal mRNA and represses translation. Genes Dev 2002; 16 : 2576–82. [Google Scholar]
  34. Cho PF, Poulin F, Cho-Park YA, et al. A new paradigm for translational control: inhibition via 5’-3’ mRNA tethering by Bicoid and the eIF4E cognate 4E-HP. Cell 2005; 121 : 411–23. [Google Scholar]
  35. Beckmann K, Grskovic M, Gebauer F, Hentze MW. A dual inhibitory mechanism restricts msl-2 mRNA translation for dosage compensation in Drosophila. Cell 2005; 122 : 529–40. [Google Scholar]
  36. Reimann I, Huth A, Thiele H, Thiele BJ. Suppression of 15-lipoxygenase synthesis by hnRNP E1 is dependent on repetitive nature of LOX mRNA 3’UTR control element DICE. J Mol Biol 2002; 5 : 965–74. [Google Scholar]
  37. Ostareck-Lederer A, Ostareck DH, Cans C, et al. c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol Cell Biol 2002; 13 : 4535–43. [Google Scholar]
  38. Proud C. Control of the elongation phase of protein synthesis. In : Hershey JWB, Mathews MB, Sonenberg N, eds. Translational control of gene expression. Cold Spring Harbor, New York : Cold Spring Harbor Laboratory Press : 2000 : 719–39. [Google Scholar]
  39. Nédélec S, Trembleau A. Emx2 in axons: translational functions of homeodomain transcription factors. Med Sci (Paris) 2005; 21 : 237–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.