Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 5, Mai 2006
Page(s) 507 - 513
Section M/S revues
DOI https://doi.org/10.1051/medsci/2006225507
Publié en ligne 15 mai 2006
  1. Mathews MB, Sonenberg N, Hershey JWB. Origins and principles of translational control. In : Hershey JWB, Mathews MB, Sonenberg N, eds. Translational control of gene expression. Cold Spring Harbor, New York : Cold Spring Harbor Laboratory Press : 2000 : 1–31. [Google Scholar]
  2. Cormier P. Translational factors: from protein synthesis to cell cycle regulation and tumorigenesis. Med Sci (Paris) 2000; 16 : 378–85. [Google Scholar]
  3. Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68 : 913–63. [Google Scholar]
  4. Cormier P, Pyronnet S, Salaun P, et al. Cap-dependent translation and control of the cell cycle. In : Meijer L, Jezequel A. Roberge M, eds. Progress in cell cycle research. Roscoff : Éditions Life in Progress, 2003; 5 : 469–75. [Google Scholar]
  5. Mamane Y, Petroulakis E, Rong L, et al. eIF4E-from translation to transformation. Oncogene 2004; 23 : 3172–9. [Google Scholar]
  6. Klein PS, Melton DA. Induction of mesoderm in Xenopus laevis embryos by translation initiation factor 4E. Science 1994; 265 : 803–6. [Google Scholar]
  7. Amiri A, Keiper BD, Kawasaki I, et al. An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C. elegans. Development 2001; 128 : 3899–912. [Google Scholar]
  8. Cormier P, Pyronnet S, Morales J, et al. eIF4E association with 4E-BP decreases rapidly following fertilization in sea urchin. Dev Biol 2001; 232 : 275–83. [Google Scholar]
  9. Robalino J, Joshi B, Fahrenkrug SC, Jagus R. Two zebrafish eIF4E family members are expressed and functionally divergent. J Biol Chem 2004; 279 : 10532–41. [Google Scholar]
  10. Varani G. A cap for all occasions. Structure 1997; 5 : 855–8. [Google Scholar]
  11. Von Der Haar T, Gross JD, Wagner G, Mc Carthy JE. The mRNA cap binding protein eIF4E in post transcriptional gene expression. Nat Struct Mol Biol 2004; 11 : 503–11. [Google Scholar]
  12. Kahvejian A, Svitkin YV, Sukarieh R, et al. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 2005; 19 : 104–13. [Google Scholar]
  13. Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988; 334 : 320–5. [Google Scholar]
  14. Vagner S, Galy B, Pyronnet S. Irresistible IRES. Attracting the translational machinery to internal ribosome entry sites. EMBO Rep 2001; 2 : 893–8. [Google Scholar]
  15. Le Breton M, Cormier P, Belle R, et al. Translational control during mitosis. Biochimie 2005; 87 : 805–11. [Google Scholar]
  16. Ye X, Fong P, Iizuka N, et al. Ultrabithorax and Antennapedia 5’untranslated regions promote developmentally regulated internal translation initiation. Mol Cell Biol 1997; 17 : 1714–21. [Google Scholar]
  17. Bernal A, Kimbrell DA. Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. Proc Natl Acad Sci USA 2000; 97 : 6019–24. [Google Scholar]
  18. Salaün P, Pyronnet S, Morales J, et al. eIF4E/4E-BP dissociation and 4E-BP degradation in the first mitotic division of the sea urchin embryo. Dev Biol 2003; 255 : 428–39. [Google Scholar]
  19. Morley SM, Coldwell MJ, Clemens MJ. Initiation factor modifications in the preapoptotic phase. Cell Death Diff 2005; 12 : 571–84. [Google Scholar]
  20. Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 2004; 23 : 3180–8. [Google Scholar]
  21. Salaun P, Boulben S, Mulner-Lorillon O, et al. Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos. J Cell Sci 2005; 118 : 1385–94. [Google Scholar]
  22. Dostie J, Ferraiuolo M, Pause SA, Sonenberg N. A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5’ cap-binding protein, eIF4E. EMBO J 2000; 19 : 3142–56. [Google Scholar]
  23. Gamberi C, Peterson DS, Gottlieb E. An anterior function for the Drosophila posterior determinant Pumilio. Development 2002; 129 : 2699–710. [Google Scholar]
  24. Evans TC, Crittenden SL, Kodoyianni V, Kimble J. Translational control of maternal glp-1 mRNA establishes an asymetry in the C. elegans embryo. Cell 1994; 77 : 183–94. [Google Scholar]
  25. Priess JR, Schnabel H, Schnabel R. The glp-1 locus and cellular interaction in early C. elegans embryos. Cell 1987; 51 : 601–11. [Google Scholar]
  26. Richter JD. Cytoplasmic polyadenylation in development and beyond. Microbiol Mol Biol Rev 1999; 63 : 446–56. [Google Scholar]
  27. Barnard D, Cao Q, Richter JD. Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol Cell Biol 2005; 25 : 7605–15. [Google Scholar]
  28. Nakamura A, Sato K, Hanyu-Nakurama K. Drosophila Cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA in oogenesis. Dev Cell 2004; 6 : 69–78. [Google Scholar]
  29. Wilhelm JE, Smibert CA. Mechanisms of translational regulation in Drosophila. Biol Cell 2005; 97 : 235–52. [Google Scholar]
  30. Forrest KM, Clark IE, Jain RA, Gavis ER. Temporal complexity within a translational control element in the nanos mRNA. Development 2004; 131 : 5849–57. [Google Scholar]
  31. Nelson M, Leidal AM, Smibert CA. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J 2004; 23 : 150–9. [Google Scholar]
  32. Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 2001; 35 : 365- 406. [Google Scholar]
  33. Niessing D, Blanke S, Jackle H. Bicoid associates with the 5’-cap-bound complex of caudal mRNA and represses translation. Genes Dev 2002; 16 : 2576–82. [Google Scholar]
  34. Cho PF, Poulin F, Cho-Park YA, et al. A new paradigm for translational control: inhibition via 5’-3’ mRNA tethering by Bicoid and the eIF4E cognate 4E-HP. Cell 2005; 121 : 411–23. [Google Scholar]
  35. Beckmann K, Grskovic M, Gebauer F, Hentze MW. A dual inhibitory mechanism restricts msl-2 mRNA translation for dosage compensation in Drosophila. Cell 2005; 122 : 529–40. [Google Scholar]
  36. Reimann I, Huth A, Thiele H, Thiele BJ. Suppression of 15-lipoxygenase synthesis by hnRNP E1 is dependent on repetitive nature of LOX mRNA 3’UTR control element DICE. J Mol Biol 2002; 5 : 965–74. [Google Scholar]
  37. Ostareck-Lederer A, Ostareck DH, Cans C, et al. c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol Cell Biol 2002; 13 : 4535–43. [Google Scholar]
  38. Proud C. Control of the elongation phase of protein synthesis. In : Hershey JWB, Mathews MB, Sonenberg N, eds. Translational control of gene expression. Cold Spring Harbor, New York : Cold Spring Harbor Laboratory Press : 2000 : 719–39. [Google Scholar]
  39. Nédélec S, Trembleau A. Emx2 in axons: translational functions of homeodomain transcription factors. Med Sci (Paris) 2005; 21 : 237–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.