Accès gratuit
Numéro |
Med Sci (Paris)
Volume 22, Numéro 5, Mai 2006
|
|
---|---|---|
Page(s) | 502 - 506 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/2006225502 | |
Publié en ligne | 15 mai 2006 |
- Pääbo S. Molecular cloning of ancient Egyptian mummy DNA. Nature 1985; 314 : 644–5. [Google Scholar]
- Higuchi RG, Bowman B, Freiberger M, et al. DNA sequences from the quagga, an extinct member of the horse family. Nature 1984; 312 : 282–4. [Google Scholar]
- Golenberg EM, Giannasi DE, Clegg MT, et al. Chloroplast DNA sequence from a Miocene Magnolia species. Nature 1990; 344 : 656–8. [Google Scholar]
- Cano RJ, Poinar HN, Pieniazek NJ, et al. Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature 1993; 363 : 536–8. [Google Scholar]
- Woodward SR, Weyand NJ, Bunnel M. DNA sequence from cretaceous period bone fragments. Science 1994; 266 : 1229–32. [Google Scholar]
- Gutierrez G, Marin A. 1998. The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Mol Biol Evol 15 : 926–9. [Google Scholar]
- Austin JJ, Ross AJ, Smith AB, et al. 1997. Problems of reproducibility : does geologically ancient DNA survive in amber-preserved insects ? Proc R Soc B 1997; 264 : 467–74 [Google Scholar]
- Hedges SB, Schweitzer MH. Detecting dinosaur DNA. Science 1995; 268 : 1191–2 [Google Scholar]
- Austin JJ, Smith AB, Thomas RH. 1997. Palaeontology in a molecular world : the search for authentic ancient DNA. TREE 12 : 303–306 [Google Scholar]
- Willerslev E et Cooper A. Ancient DNA. Proc R Soc B 2005; 272 : 3–16. [Google Scholar]
- Hagelberg E, Thomas MG, Cook Jr CE, et al. DNA from ancient mammoth bones. Nature 1994; 370 : 333–4. [Google Scholar]
- Ozawa T, Hayashi S, Mikhelson VM. Phylogenetic position of mammoth and Steller’s sea cow within Tethytheria demonstrated by mitochondrial DNA sequences. J Mol Evol 1997; 44 : 406–13. [Google Scholar]
- Noro M, Masuda R, Dubrovo IA, et al. Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal genes. J Mol Evol 1998; 46 : 314–26. [Google Scholar]
- Derenko M, Malyarchuk B, Shields GFG. Mitochondrial cytochrome b sequence from a 33000 year-old woolly mammoth (Mammuthus primigenius). Ancient Biomolecules 1997; 1 : 149–53. [Google Scholar]
- Barriel V, Thuet E, Tassy P. Molecular phylogeny of Elephantidae. Extreme divergence of the extant forest african elephant. CR Acad Sci Paris Ser III 1999; 322 : 447–54. [Google Scholar]
- Debruyne R, Barriel V, Tassy P. Mitochondrial cytochrome b of Lyakhov mammoth (Proboscidea, Mammalia) : new data and phylogenetic analyses of Elephantidae. Mol Phylogenet Evol 2003; 26 : 421–34. [Google Scholar]
- Krause J, Dear PH, Pollack JL, et al. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature 2006; 439 : 724–7. [Google Scholar]
- Pineau P, Henry M, Suspène R, et al. PCR amplification from all Metazoan species with a universal primer set from nuclear gene HIST2H4. Mol Biol Evol 2004; 22 : 582–8. [Google Scholar]
- Krajewski C, Buckley L, Westerman M. 1997. DNA phylogeny of the marsupial wolf resolved. Proc R Soc B 264 : 911–7. [Google Scholar]
- Poinar HN, Schwarz C, Qi J, Shapiro B, et al. Metagenomics to paleogenomics : large-scale sequencing of mammoth DNA. Science 2006; 311 : 392–4. [Google Scholar]
- Cooper A, Mourer-Chauviré C, Chambers GK, et al. Independent origins of New Zealand moas and kiwis. Proc Natl Acad Sci USA 1992; 89 : 8741–4. [Google Scholar]
- Cooper A, Lalueza-Fox C, Anderson S, et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 2001; 409 : 704–7. [Google Scholar]
- Shapiro B, Drummond AJ, Rambaut A, et al. Rise and fall of the Beringian steppe bison. Science 2004; 306 : 1561–5. [Google Scholar]
- Barnes I, Matheus P, Shapiro B, et al. Dynamics of pleistocene population extinctions in Beringian brown bears. Science 2002; 295 : 2267–70. [Google Scholar]
- Lambert DM, Ritchie PA, Millar CD, et al. Rates of evolution in ancient DNA from Adélie Penguins. Science 2002; 295 : 2270–3 [Google Scholar]
- Baker AJ, Huynen LJ, Haddrath O, et al. Reconstructing the tempo and mode of evolution in an extinct clade of birds with ancient DNA : the giant moas of New Zealand. Proc Natl Acad Sci USA 2005; 102 : 8257–62. [Google Scholar]
- Larson G, Dobney K, Albarella, et al. Worlwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 2005; 307 : 1618–21. [Google Scholar]
- Weinstock J, Willerslev E, Sher A et al. Evolution, systematics, and phylogeography of pleistocene horses in the New World : a molecular perspective. PLoS Biol 2005; 3 : e241. [Google Scholar]
- Ho SYW, Phillips MJ, Cooper A, Drummond AJ. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 2005; 22 : 1561–8. [Google Scholar]
- Jaenicke-Després V, Buckler ES, Smith BD, et al. Early allelic selection in maize as revealed by ancient DNA. Science 2003; 302 : 1206–8. [Google Scholar]
- Penny D. Evolutionary biology : relativity for molecular clocks. Nature 2005; 436 : 183–4. [Google Scholar]
- Excoffier L. Ce que nous dit la généalogie des gènes. La Recherche 1997; 302 : 82–9. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.