Free Access
Med Sci (Paris)
Volume 21, Number 12, Décembre 2005
Page(s) 1076 - 1082
Section M/S revues
Published online 15 December 2005
  1. Leblond CP, Walker BE. Renewal of cell populations. Physiol Rev 1956; 36 : 255–76. [Google Scholar]
  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282 : 1145–7. [Google Scholar]
  3. Rosenthal N. Youthful prospects for human stem-cell therapy. EMBO Rep 2005; 6 : S30–4. [Google Scholar]
  4. Magnuson T, Epstein CJ, Silver LM, et al. Pluripotent embryonic stem cell lines can be derived from tw5/tw5 blastocysts. Nature 1982; 298 : 750–3. [Google Scholar]
  5. Maltsev VA, Wobus AM, Rohwedel J, et al. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 1994; 75 : 233–44. [Google Scholar]
  6. Meyer N, Jaconi M, Ladopoulou A, et al. A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett 2000; 478 : 151–8. [Google Scholar]
  7. Mery A, Aimond F, Menard, et al. Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5 trisphosphate-dependent calcium signaling. Mol Biol Cell 2005; 9 : 2414–23. [Google Scholar]
  8. Rizzino A. Early mouse embryos produce and release factors with transforming growth factor activity. In Vitro Cell Dev Biol 1985; 21 : 531–6. [Google Scholar]
  9. Behfar A, Zingman L, Hodgson D, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 2002; 16 : 1558–66. [Google Scholar]
  10. Frasch M. Intersecting signalling and transcriptional pathways in Drosophila heart specification. Semin Cell Dev Biol 1999; 10 : 61–71. [Google Scholar]
  11. Andree B, Duprez D, Vorbusch B, et al. BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dev 1998; 70 : 119–31. [Google Scholar]
  12. Reiter JF, Verkade H, Stainier DY. Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5. Dev Biol 2001; 234 : 330–8. [Google Scholar]
  13. Shi Y, Katsev S, Cai C, Evans S. BMP signaling is required for heart formation in vertebrates. Dev Biol 2000; 224 : 226–37. [Google Scholar]
  14. Kelly RG. Molecular inroads into the anterior heart field. Trends Cardiovasc Med 2005; 15 : 51–6. [Google Scholar]
  15. Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003; 5 : 877–89. [Google Scholar]
  16. Von Both I, Silvestri C, Erdemir T, et al. Foxh1 is essential for development of the anterior heart field. Dev Cell 2004; 7 : 331–45. [Google Scholar]
  17. Meilhac SM, Esner M, Kelly RG, et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 2004; 6 : 685–98. [Google Scholar]
  18. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res 2000; 46 : 250–6. [Google Scholar]
  19. Kofidis T, de Bruin JL, Yamane T, et al. Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 2005; 111 : 2486–93. [Google Scholar]
  20. Ménard C, Hagège A, Agbulut O, et al. Transplantation of mouse cardiac-committed embryonic stem cells in infarcted sheep myocardium: a preclinical study. Lancet 2006 (sous presse). [Google Scholar]
  21. Behfar A, Hodgson DM, Zingman LV, et al. Administration of allogenic stem cells dosed to secure cardiogenesis and sustained infarct repair. Ann NY Acad Sci 2005; 1049 : 189–98. [Google Scholar]
  22. Damajanov I, Solter D, Skreb N. Teratocarcinogenesis as related to the age of embryos grafted under the kidney capsule. Roux Arch Dev Biol 1971; 173 : 228–34. [Google Scholar]
  23. Eventov-Friedman S, Katchman H, Shezen E, et al. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci USA 2005; 102 : 2928–33. [Google Scholar]
  24. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001; 108 : 407–14. [Google Scholar]
  25. He JQ, Ma Y, Lee Y, et al. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 2003; 93 : 32–9. [Google Scholar]
  26. Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004; 22 : 1282–9. [Google Scholar]
  27. Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 2005; 111 : 11–20. [Google Scholar]
  28. Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. Development 2004; 131 : 5515–25. [Google Scholar]
  29. Schuldiner M, Yanuka O, Itskovitz-Eldor J, et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000; 97 : 11307–12. [Google Scholar]
  30. Mummery C, Ward-Van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003; 107 : 2733–40. [Google Scholar]
  31. Chiu RC. Xenogeneic cell transplant: fact or fancy ? Int J Cardiol 2004; 95 (suppl 1) : S43–4. [Google Scholar]
  32. Drukker M, Benvenisty N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 2004; 22 : 136–41. [Google Scholar]
  33. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105 : 1815–22. [Google Scholar]
  34. Frandrich F, Lin X, Chai GX, et al. Preimplantation-stage stem cells induce long-term allogenic graft acceptance without supplementary host conditioning. Nat Med 2002; 8 : 171–8. [Google Scholar]
  35. Li L, Baroja ML, Majumdar A, Chadwick K, et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells 2004; 22 : 448–56. [Google Scholar]
  36. Fabricius D, Bonde S, Zavazava N. Induction of stable mixed chimerism by embryonic stem cells requires functional Fas/FasL engagement. Transplantation 2005; 79 : 1040–4. [Google Scholar]
  37. Tam PLL, Zhou SX. The allocation of epiblats cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 1996; 178 : 124–32. [Google Scholar]
  38. Papadimou E, Menard C, Grey C, Puceat M. Interplay between the retinoblastoma protein and LEK1 specifies stem cells toward the cardiac lineage. EMBO J 2005; 24 : 1750–61. [Google Scholar]
  39. Harvey RP. Patterning the vertebrate heart. Nat Rev Genet 2002; 3 : 544–56. [Google Scholar]
  40. Eisenberg CA, Eisenberg LM. WNT11 promotes cardiac tissue formation of early mesoderm. Dev Dyn 1999; 216 : 45–58. [Google Scholar]
  41. Dell’Era P, Ronca R, Coco L, et al. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ Res 2003; 93 : 414–20. [Google Scholar]
  42. Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 2001; 105 : 781–92. [Google Scholar]
  43. Schroeder T, Fraser ST, Ogawa M, et al. Recombination signal sequence-binding protein J-kappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc Natl Acad Sci USA 2003; 100 : 4018–23. [Google Scholar]
  44. Ryan K, Chin AJ. T-box genes and cardiac development. Birth Defects Res C Embryo Today 2003; 69 : 25–37. [Google Scholar]
  45. Olson EN. Development. The path to the heart and the road not taken. Science 2001; 291 : 2327–8. [Google Scholar]
  46. Loebel DA, Watson CM, De Young RA, et al. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 2003; 264 : 1–14. [Google Scholar]
  47. Wei Y, Bader D, Litvin J. Identification of a novel cardiac-specific transcript critical for cardiac myocyte differentiation. Development 1996; 122 : 2779–89. [Google Scholar]
  48. Latham KE. Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol 1999; 193 : 71–124. [Google Scholar]
  49. Dvash T, Mayshar Y, Darr H, et al. Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum Reprod 2004; 19 : 2875–83. [Google Scholar]
  50. Rao M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol 2004; 275 : 269–86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.