Accès gratuit
Med Sci (Paris)
Volume 21, Numéro 12, Décembre 2005
Page(s) 1076 - 1082
Section M/S revues
Publié en ligne 15 décembre 2005
  1. Leblond CP, Walker BE. Renewal of cell populations. Physiol Rev 1956; 36 : 255–76. [Google Scholar]
  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282 : 1145–7. [Google Scholar]
  3. Rosenthal N. Youthful prospects for human stem-cell therapy. EMBO Rep 2005; 6 : S30–4. [Google Scholar]
  4. Magnuson T, Epstein CJ, Silver LM, et al. Pluripotent embryonic stem cell lines can be derived from tw5/tw5 blastocysts. Nature 1982; 298 : 750–3. [Google Scholar]
  5. Maltsev VA, Wobus AM, Rohwedel J, et al. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 1994; 75 : 233–44. [Google Scholar]
  6. Meyer N, Jaconi M, Ladopoulou A, et al. A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett 2000; 478 : 151–8. [Google Scholar]
  7. Mery A, Aimond F, Menard, et al. Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5 trisphosphate-dependent calcium signaling. Mol Biol Cell 2005; 9 : 2414–23. [Google Scholar]
  8. Rizzino A. Early mouse embryos produce and release factors with transforming growth factor activity. In Vitro Cell Dev Biol 1985; 21 : 531–6. [Google Scholar]
  9. Behfar A, Zingman L, Hodgson D, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 2002; 16 : 1558–66. [Google Scholar]
  10. Frasch M. Intersecting signalling and transcriptional pathways in Drosophila heart specification. Semin Cell Dev Biol 1999; 10 : 61–71. [Google Scholar]
  11. Andree B, Duprez D, Vorbusch B, et al. BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dev 1998; 70 : 119–31. [Google Scholar]
  12. Reiter JF, Verkade H, Stainier DY. Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5. Dev Biol 2001; 234 : 330–8. [Google Scholar]
  13. Shi Y, Katsev S, Cai C, Evans S. BMP signaling is required for heart formation in vertebrates. Dev Biol 2000; 224 : 226–37. [Google Scholar]
  14. Kelly RG. Molecular inroads into the anterior heart field. Trends Cardiovasc Med 2005; 15 : 51–6. [Google Scholar]
  15. Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003; 5 : 877–89. [Google Scholar]
  16. Von Both I, Silvestri C, Erdemir T, et al. Foxh1 is essential for development of the anterior heart field. Dev Cell 2004; 7 : 331–45. [Google Scholar]
  17. Meilhac SM, Esner M, Kelly RG, et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 2004; 6 : 685–98. [Google Scholar]
  18. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res 2000; 46 : 250–6. [Google Scholar]
  19. Kofidis T, de Bruin JL, Yamane T, et al. Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 2005; 111 : 2486–93. [Google Scholar]
  20. Ménard C, Hagège A, Agbulut O, et al. Transplantation of mouse cardiac-committed embryonic stem cells in infarcted sheep myocardium: a preclinical study. Lancet 2006 (sous presse). [Google Scholar]
  21. Behfar A, Hodgson DM, Zingman LV, et al. Administration of allogenic stem cells dosed to secure cardiogenesis and sustained infarct repair. Ann NY Acad Sci 2005; 1049 : 189–98. [Google Scholar]
  22. Damajanov I, Solter D, Skreb N. Teratocarcinogenesis as related to the age of embryos grafted under the kidney capsule. Roux Arch Dev Biol 1971; 173 : 228–34. [Google Scholar]
  23. Eventov-Friedman S, Katchman H, Shezen E, et al. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci USA 2005; 102 : 2928–33. [Google Scholar]
  24. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001; 108 : 407–14. [Google Scholar]
  25. He JQ, Ma Y, Lee Y, et al. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 2003; 93 : 32–9. [Google Scholar]
  26. Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004; 22 : 1282–9. [Google Scholar]
  27. Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 2005; 111 : 11–20. [Google Scholar]
  28. Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. Development 2004; 131 : 5515–25. [Google Scholar]
  29. Schuldiner M, Yanuka O, Itskovitz-Eldor J, et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000; 97 : 11307–12. [Google Scholar]
  30. Mummery C, Ward-Van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003; 107 : 2733–40. [Google Scholar]
  31. Chiu RC. Xenogeneic cell transplant: fact or fancy ? Int J Cardiol 2004; 95 (suppl 1) : S43–4. [Google Scholar]
  32. Drukker M, Benvenisty N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 2004; 22 : 136–41. [Google Scholar]
  33. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105 : 1815–22. [Google Scholar]
  34. Frandrich F, Lin X, Chai GX, et al. Preimplantation-stage stem cells induce long-term allogenic graft acceptance without supplementary host conditioning. Nat Med 2002; 8 : 171–8. [Google Scholar]
  35. Li L, Baroja ML, Majumdar A, Chadwick K, et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells 2004; 22 : 448–56. [Google Scholar]
  36. Fabricius D, Bonde S, Zavazava N. Induction of stable mixed chimerism by embryonic stem cells requires functional Fas/FasL engagement. Transplantation 2005; 79 : 1040–4. [Google Scholar]
  37. Tam PLL, Zhou SX. The allocation of epiblats cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 1996; 178 : 124–32. [Google Scholar]
  38. Papadimou E, Menard C, Grey C, Puceat M. Interplay between the retinoblastoma protein and LEK1 specifies stem cells toward the cardiac lineage. EMBO J 2005; 24 : 1750–61. [Google Scholar]
  39. Harvey RP. Patterning the vertebrate heart. Nat Rev Genet 2002; 3 : 544–56. [Google Scholar]
  40. Eisenberg CA, Eisenberg LM. WNT11 promotes cardiac tissue formation of early mesoderm. Dev Dyn 1999; 216 : 45–58. [Google Scholar]
  41. Dell’Era P, Ronca R, Coco L, et al. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ Res 2003; 93 : 414–20. [Google Scholar]
  42. Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 2001; 105 : 781–92. [Google Scholar]
  43. Schroeder T, Fraser ST, Ogawa M, et al. Recombination signal sequence-binding protein J-kappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc Natl Acad Sci USA 2003; 100 : 4018–23. [Google Scholar]
  44. Ryan K, Chin AJ. T-box genes and cardiac development. Birth Defects Res C Embryo Today 2003; 69 : 25–37. [Google Scholar]
  45. Olson EN. Development. The path to the heart and the road not taken. Science 2001; 291 : 2327–8. [Google Scholar]
  46. Loebel DA, Watson CM, De Young RA, et al. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 2003; 264 : 1–14. [Google Scholar]
  47. Wei Y, Bader D, Litvin J. Identification of a novel cardiac-specific transcript critical for cardiac myocyte differentiation. Development 1996; 122 : 2779–89. [Google Scholar]
  48. Latham KE. Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol 1999; 193 : 71–124. [Google Scholar]
  49. Dvash T, Mayshar Y, Darr H, et al. Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum Reprod 2004; 19 : 2875–83. [Google Scholar]
  50. Rao M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol 2004; 275 : 269–86. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.