Free Access
Med Sci (Paris)
Volume 21, Number 12, Décembre 2005
Page(s) 1083 - 1088
Section M/S revues
Published online 15 December 2005
  1. Auger J, Kunstmann JM, Czyglik F, Jouannet P. Decline in semen quality among fertile men in Paris during the past 20 years. N Engl J Med 1995; 332 : 281–5. [Google Scholar]
  2. Sharpe RM, Irvine DS. How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health ? Br Med J 2004; 328 : 447–51. [Google Scholar]
  3. Toppari J, Larsen J, Christiansen P, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect 1996; 104 : 741–803. [Google Scholar]
  4. Toppari J, Kaleva M, Virtanen HE. Trends in the incidence of cryptorchidism and hypospadias, and methodological limitations of registry-based data. Hum Reprod Update 2001; 7 : 282–6. [Google Scholar]
  5. Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 2001; 16 : 972–8. [Google Scholar]
  6. Habert R, Lejeune H, Saez JM. Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol 2001; 179 : 47–74. [Google Scholar]
  7. Kubota Y, Temelcos C, Bathgate RA, et al. The role of insulin 3, testosterone, Mullerian inhibiting substance and relaxin in rat gubernacular growth. Mol Hum Reprod 2002; 8 : 900–5. [Google Scholar]
  8. Rajpert-De Meyts E, Jorgensen N, Brondum-Nielsen K, et al. Developmental arrest of germ cells in the pathogenesis of germ cell neoplasia. Apmis 1998; 106 : 198–206. [Google Scholar]
  9. Orth JM, Gunsalus GL, Lamperti AA. Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology 1988; 122 : 787–94. [Google Scholar]
  10. Jegou B, Auger J, Multigner L, et al. The saga of the sperm count decrease in humans and wild and farm animals. In: Gagnon C, ed. The male gamete: from basic science to clinical applications. Clearwater: Cache River Press, 1999: 446–54. [Google Scholar]
  11. Vos JG, Dybing E, Greim HA, et al. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol 2000; 30 : 71–133. [Google Scholar]
  12. Glaze GM. Diethylstilbestrol exposure in utero: review of literature. J Am Osteopath Assoc 1984; 83 : 435–8. [Google Scholar]
  13. Strohsnitter WC, Noller KL, Hoover RN, et al. Cancer risk in men exposed in utero to diethylstilbestrol. J Natl Cancer Inst 2001; 93 : 545–51. [Google Scholar]
  14. Wilcox AJ, Baird DD, Weinberg CR, et al. Fertility in men exposed prenatally to diethylstilbestrol. N Engl J Med 1995; 332 : 1411–6. [Google Scholar]
  15. Swan SH, Main KM, Lui F, et al. Decrease in anogenital distance among male infants with prenatal phtalate exposure. Environ Health Perspect 2005; 113 : 1056–61. [Google Scholar]
  16. O’Donnell L, Robertson KM, Jones ME, Simpson ER. Estrogen and spermatogenesis. Endocrinol Rev 2001; 22 : 289–318. [Google Scholar]
  17. Saunders PT, Sharpe RM, Williams K, et al. Differential expression of oestrogen receptor alpha and beta proteins in the testes and male reproductive system of human and non-human primates. Mol Hum Reprod 2001; 7 : 227–36. [Google Scholar]
  18. Sharpe RM. The estrogen hypothesis: where do we stand now ? Int J Androl 2003; 26 : 2–15. [Google Scholar]
  19. Carreau S. Estrogens: male hormones ? Folia Histochem Cytobiol 2003; 41 : 107–11. [Google Scholar]
  20. Delbes G, Levacher C, Pairault C, et al. Estrogen receptor beta-mediated inhibition of male germ cell line development in mice by endogenous estrogens during perinatal life. Endocrinology 2004; 145 : 3395–403. [Google Scholar]
  21. Delbes G, Levacher C, Duquenne C, et al. Endogenous estrogens inhibit mouse fetal Leydig cell development via estrogen receptor alpha. Endocrinology 2005; 146 : 2454–61. [Google Scholar]
  22. Habert R, Devif I, Gangnerau MN, et al. Ontogenesis of the in vitro response of rat testis to gonadotropin releasing hormone. Mol Cell Endocrinol 1991; 82 : 199–206. [Google Scholar]
  23. Rouiller-Fabre V, Levacher C, Pairault C, et al. Development of the fetal and neonatal testis. Andrologia 2003; 35 : 79–83. [Google Scholar]
  24. Lassurguere J, Livera G, Habert R, Jegou B. Time- and dose-related effects of estradiol and diethylstilbestrol on the morphology and function of the fetal rat testis in culture. Toxicol Sci 2003; 73 : 160–9. [Google Scholar]
  25. Spearow JL, Barkley M. Reassessment of models used to test xenobiotics for estrogenic potency is overdue. Hum Reprod 2001; 16 : 1027–9. [Google Scholar]
  26. Atanassova N, McKinnell C, Turner K, et al. Comparative effects of neonatal exposure of male rats to potent and weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: evidence for stimulatory effects of low estrogen levels. Endocrinology 2000; 141 : 3898–908. [Google Scholar]
  27. Fielden MR, Samy SM, Chou KC, Zacharewski TR. Effect of human dietary exposure levels of genistein during gestation and lactation on long-term reproductive development and sperm quality in mice. Food Chem Toxicol 2003; 41 : 447–54. [Google Scholar]
  28. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308 : 1466–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.