Free Access
Med Sci (Paris)
Volume 21, Number 12, Décembre 2005
Page(s) 1070 - 1075
Section M/S revues
Published online 15 December 2005
  1. Greaves DR, Gordon S. Macrophage-specific gene expression: current paradigms and future challenges. Int J Hematol 2002; 76 : 6–15. [Google Scholar]
  2. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296 : 298–300. [Google Scholar]
  3. Denkers EY. From cells to signaling cascades: manipulation of innate immunity by Toxoplasma gondii. FEMS Immunol Med Microbiol 2003; 39 : 193–203. [Google Scholar]
  4. Pawelek JM. Tumour cell hybridization and metastasis revisited. Melanoma Res 2000; 10 : 507–14. [Google Scholar]
  5. Vignery A, Niven-Fairchild T, Ingbar DH, Caplan M. Polarized distribution of Na+,K+-ATPase in giant cells elicited in vivo and in vitro. J Histochem Cytochem 1989; 37 : 1265–71. [Google Scholar]
  6. Vignery A. Macrophage multinucleation is accompanied by the expression of new soluble and membrane antigens in mice. Am J Pathol 1989; 135 : 565–70. [Google Scholar]
  7. Vignery A Niven-Fairchild T, Shepard MH. Recombinant murine interferon gamma inhibits the fusion of mouse alveolar macrophages in vitro but stimulates the formation of osteoclast-like cells on implanted syngeneic bone particles in vivo. J Bone Miner Res 1990; 5 : 637–44. [Google Scholar]
  8. Vignery A. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int J Exp Pathol 2000; 81 : 291–304 [Google Scholar]
  9. Saginario C, Qian HY, Vignery A. Identification of an inducible surface molecule specific to fusing macrophages. Proc Natl Acad Sci USA 1995; 92 : 12210–4. [Google Scholar]
  10. Saginario C, Sterling H, Beckers C, et al. MFR, a putative receptor mediating the fusion of macrophages. Mol Cell Biol 1998; 18 : 6213–23. [Google Scholar]
  11. Sterling H, Saginario C, Vignery A. CD44 occupancy prevents the fusion of macrophages. J Cell Biol 1998; 143 : 837–47. [Google Scholar]
  12. Han X, Sterling H, Chen Y, et al. CD47, a ligand for MFR, participates in macrophage multinucleation. J Biol Chem 2000; 275 : 37984–92. [Google Scholar]
  13. Kharitonenkov A, Chen Z, Sures I, et al. A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 1997; 386 : 181–6. [Google Scholar]
  14. Fujioka Y, Matozaki T, Noguchi T, et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol 1996; 16 : 6887–99. [Google Scholar]
  15. Sano S, Ohnishi H, Omori A, et al. BIT, an immune antigen receptor-like molecule in the brain. FEBS Lett 1997; 411 : 327–34. [Google Scholar]
  16. Comu S, Weng W, Olinsky S, et al. The urine P84 neural adhesion molecule is SHPS-1, a member of the phosphatase-binding protein family. J Neurosci 1997; 17 : 8702–10. [Google Scholar]
  17. Brooke GP, Parsons KR, Howard CJ. Cloning of two members of the SIRP alpha family of protein tyrosine phosphatase binding proteins in cattle that are expressed on monocytes and a subpopulation of dendritic cells and which mediate binding to CD4 T cells. Eur J Immunol 1998; 28 : 1–11. [Google Scholar]
  18. Dalgleish AG, Beverley PC, Clapham PR, et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984; 312 : 763–7. [Google Scholar]
  19. Klatzmann D, Champagne E, Chamaret S, et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 1984; 312 : 767–8. [Google Scholar]
  20. Oshima K, Ruhul Amin AR, Suzuki A, et al. SHPS-1, a multifunctional transmembrane glycoprotein. FEBS Lett 2002; 519 : 1–7. [Google Scholar]
  21. Cant CA, Ullrich A. Signal regulation by family conspiracy. Cell Mol Life Sci 2001; 58 : 117–24. [Google Scholar]
  22. Kajita M, Itoh Y, Chiba T, et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 2001; 153 : 893–904. [Google Scholar]
  23. Yagi M, Miyamoto T, Sawatani Y, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 2005; 202 : 345–51. [Google Scholar]
  24. Vignery A. Macrophage fusion : the making of osteoclasts and giant cells. J Exp Med 2005; 202 : 337–40. [Google Scholar]
  25. Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from Toll-like receptors. Science 2004; 304 : 1014–8. [Google Scholar]
  26. Williamson P, Schlegel RA. Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim Biophys Acta 2002; 1585 : 53–63. [Google Scholar]
  27. Van den Berg TK, Yoder JA, Litman GW. On the origins of adaptive immunity: innate immune receptors join the tale. Trends Immunol 2004; 25 : 11–6. [Google Scholar]
  28. Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells. Science 2000; 288 : 2051–4. [Google Scholar]
  29. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003; 422 : 901–4. [Google Scholar]
  30. Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003; 422 : 897–901. [Google Scholar]
  31. Vassillopoulos G, Russell DW. Cell fusion: an alternative to stem cell plasticity and its therapeutic implication. Curr Opin Genet Dev 2003; 13 : 480–5. [Google Scholar]
  32. Medvinsky A, Smith A. Fusion brings down barriers. Nature 2003; 422 : 823–5. [Google Scholar]
  33. Willenbring H, Bailey AS, Foster M, et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med 2004; 10 : 744–8. [Google Scholar]
  34. Camargo FD, Chambers SM, Goodell MA. Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest 2004; 113 : 1266–71. [Google Scholar]
  35. Camargo FD, Chambers SM, Goodell MA. Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif 2004; 37 : 55–65. [Google Scholar]
  36. Chakraborty AK, De Freitas Sousa J, Espreafico EM, Pawelek JM. Human monocyte x mouse melanoma fusion hybrids express human gene. Gene 2001; 275 : 103–6. [Google Scholar]
  37. Chakraborty AK, Kolesnikova N, Sousa J, et al. Expression of c-met proto-oncogene in metastatic macrophages X melanoma fusion hybrids: implication of its possible role in MSH-induced motility. Oncol Res 2003; 14 : 163–74. [Google Scholar]
  38. Duelli D, Lazebnik Y. Cell fusion: a hidden enemy ? Cancer Cell 2003; 3 : 445–8. [Google Scholar]
  39. Ohnishi H, Kobayashi H, Okazawa H, et al. Ectodomain shedding of SHPS-1 and its role in regulation of cell migration. J Biol Chem 2004; 279 : 27878–87. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.