Free Access
Issue
Med Sci (Paris)
Volume 21, Number 5, Mai 2005
Page(s) 491 - 497
Section M/S revues
DOI https://doi.org/10.1051/medsci/2005215491
Published online 15 May 2005
  1. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25 : 585–621. [Google Scholar]
  2. Wright WE, Shay JW. Cellular senescence as a tumor-protection mechanism : the essential role of counting. Curr Opin Genet Dev 2001; 11 : 98–103. [Google Scholar]
  3. Shay JW, Roninson IB. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 2004; 23 : 2919–33. [Google Scholar]
  4. Kim SH, Kaminker P, Campisi J. Telomeres, aging and cancer : in search of a happy ending. Oncogene 2002; 21 : 503–11. [Google Scholar]
  5. Blackburn EH. Switching and signaling at the telomere. Cell 2001; 106 : 661–73. [Google Scholar]
  6. De Lange T. Protection of mammalian telomeres. Oncogene 2002; 21 : 532–40. [Google Scholar]
  7. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43 : 405–13. [Google Scholar]
  8. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345 : 458–60. [Google Scholar]
  9. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279 : 349–52. [Google Scholar]
  10. Morales CP, Holt SE, Ouellette M, et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 1999; 21 : 115–8. [Google Scholar]
  11. Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature 1999; 400 : 464–8. [Google Scholar]
  12. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266 : 2011–5. [Google Scholar]
  13. Hiyama E, Hiyama K, Yokoyama T, et al. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1995; 1 : 249–55. [Google Scholar]
  14. Wynford-Thomas D, Bond JA, Wyllie FS, et al. Does telomere shortening drive selection for p53 mutation in human cancer ? Mol Carcinog 1995; 12 : 119–23. [Google Scholar]
  15. Gire V, Wynford-Thomas D. Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol 1998; 18 : 1611–21. [Google Scholar]
  16. Noda A, Ning Y, Venable SF, et al. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 1994; 211 : 90–8. [Google Scholar]
  17. Gire V, Roux P, Wynford-Thomas D, et al. DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J 2004; 23 : 2554–63. [Google Scholar]
  18. Di Leonardo A, Linke SP, Clarkin K, et al. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 1994, 8 : 2540–51. [Google Scholar]
  19. D’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426 : 194–8. [Google Scholar]
  20. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421 : 499–506. [Google Scholar]
  21. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001; 15 : 2177–96. [Google Scholar]
  22. Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992; 11 : 1921–9. [Google Scholar]
  23. Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295 : 2446–9. [Google Scholar]
  24. Karlseder J, Broccoli D, Dai Y, et al. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283 : 1321–5. [Google Scholar]
  25. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003; 13 : 1549–56. [Google Scholar]
  26. Van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92 : 401–13. [Google Scholar]
  27. Stewart SA, Ben-Porath I, Carey VJ, et al. Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 2003; 33 : 492–6. [Google Scholar]
  28. Shay JW, Van Der Haegen BA, Ying Y, et al. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp Cell Res 1993; 209 : 45–52. [Google Scholar]
  29. Wright WE, Shay JW. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 1992; 27 : 383–9. [Google Scholar]
  30. Bryan TM, Englezou A, Gupta J, et al. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995; 14 : 4240–8. [Google Scholar]
  31. Blasco MA. Mouse models to study the role of telomeres in cancer, aging and DNA repair. Eur J Cancer 2002; 38 : 2222–8. [Google Scholar]
  32. Gonzalez-Suarez E, Samper E, Flores JM, et al. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000; 26 : 114–7. [Google Scholar]
  33. Greenberg RA, Chin L, Femino A, et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 1999; 97 : 515–25. [Google Scholar]
  34. Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88 : 593–602. [Google Scholar]
  35. Drayton S, Peters G. Immortalisation and transformation revisited. Curr Opin Genet Dev 2002; 12 : 98–104. [Google Scholar]
  36. Wei W, Hemmer RM, Sedivy JM. Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol 2001; 21 : 6748–57. [Google Scholar]
  37. Alcorta DA, Xiong Y, Phelps D, et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 1996; 93 : 13742–7. [Google Scholar]
  38. Beausejour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence : roles of the p53 and p16 pathways. EMBO J 2003; 22 : 4212–22. [Google Scholar]
  39. Kiyono T, Foster SA, Koop JI, et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396 : 84–8. [Google Scholar]
  40. Ramirez RD, Morales CP, Herbert BS, et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 2001; 15 : 398–403. [Google Scholar]
  41. Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91 : 649–59. [Google Scholar]
  42. Sharpless NE, Bardeesy N, Lee KH, et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001; 413 : 86–91. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.